

4.6 Motion Along a Line (1-Dimension)

Position, Velocity, and Acceleration

Position

$s(t)$ the position of an object moving along a line at time t
Same as $x(t)$ for some physics classes

Displacement from $t = a$ to $t = b$

$$\text{displacement} = s(b) - s(a)$$

Displacement the change in position of the object

Average Velocity (slope of secant line)

$$v_{avg} = \frac{\text{displacement}}{\text{time elapsed}} = \frac{\Delta s}{\Delta t} = \frac{s(b) - s(a)}{b - a}$$

Instantaneous Velocity (slope of tangent line)

$$v(t) = \frac{ds}{dt} = \lim_{h \rightarrow 0} \frac{s(t+h) - s(t)}{h} = s'(t)$$

Average Acceleration (slope of secant line)

$$a_{avg} = \frac{\text{change of velocity}}{\text{time elapsed}} = \frac{\Delta v}{\Delta t} = \frac{v(b) - v(a)}{b - a}$$

Instantaneous Acceleration (slope of tangent line)

$$a(t) = \frac{dv}{dt} = \lim_{h \rightarrow 0} \frac{v(t+h) - v(t)}{h} = v'(t)$$

$$a(t) = v'(t) = s''(t)$$

Instantaneous Speed

$$\text{speed} = \left| \frac{ds}{dt} \right| = |v(t)|$$

Speed is scalar and has no direction, only the magnitude

Ex. A ball is thrown directly upwards with an initial velocity of 20 m/s from the top of a building 10 m above the ground. The position, in metres, of the ball above the ground after t seconds is given by the function $s(t) = -5t^2 + 20t + 10$.

a. Find the ball's displacement from $t = 0$ to $t = 2$.

$$s(0) = 10 \quad s(2) = -20 + 40 + 10 = 30$$
$$d = s(2) - s(0) = 30 - 10 = 20 \text{ m}$$

b. Find the ball's average velocity from $t = 0$ to $t = 2$.

$$v_{avg} = \frac{s(2) - s(0)}{2 - 0} = \frac{20}{2} = 10 \text{ m/s}$$

c. Find the ball's velocity and acceleration functions.

$$v(t) = s'(t) = -10t + 20$$
$$a(t) = v'(t) = -10$$

d. Find the ball's position, velocity, speed, and acceleration at $t = 3$.

$$s(3) = -5(3)^2 + 20(3) + 10 = 25$$
$$v(3) = -10(3) + 20 = -10 \text{ m/s}$$
$$\text{speed} = |v(3)| = |-10| = 10 \text{ m/s}$$
$$a(3) = -10 \text{ m/s}^2$$

e. How many seconds will it take the ball to reach the highest point? What is the maximum height?

Maximum height occurs when $v(t) = 0$

$$-10t + 20 = 0$$

$$-10(t - 2) = 0$$

$$t = 2 \text{ s}$$

$$s(2) = -5(2)^2 + 20(2) + 10 = 30 \text{ m}$$

The ball will reach a maximum height of 30 m at 2 seconds.

Position, Velocity and Acceleration Graphs

The following explains how the sign of the object's position, velocity, and acceleration determines how the object moves

Position

If $s > 0$, the object is on the positive side of the s -axis

If $s < 0$, the object is on the negative side of the s -axis

Velocity

If $v > 0$, the object is moving in the positive direction

If $v < 0$, the object is moving in the negative direction

If $v = 0$, the object is at rest

If v changes sign, the object changes direction

Acceleration

If $a > 0$, v is increasing

If $a < 0$, v is decreasing

This is different from the **speed** of the object

Velocity and Acceleration (the signs of v and a are the same)

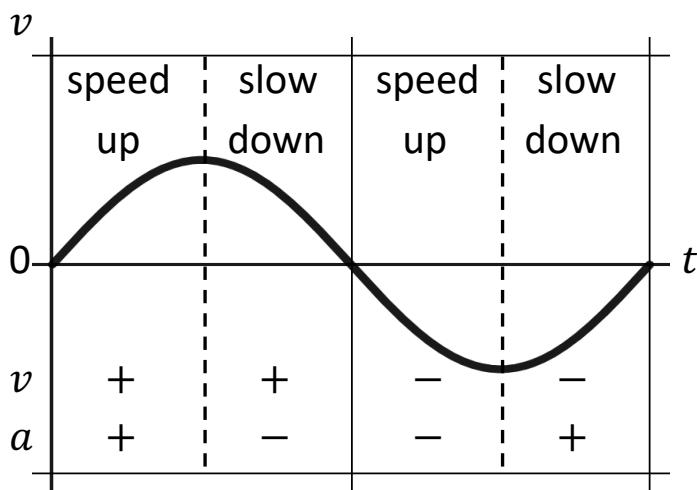
If $a > 0$ and $v > 0$ or $a < 0$ and $v < 0$,
the **speed** of the object is **increasing**.

Velocity and Acceleration (the signs of v and a are opposite)

If $a > 0$ and $v < 0$ or $a < 0$ and $v > 0$,
the **speed** of the object is **decreasing**.

Velocity-Time Curve

A summary of the information above



Ex. An object is moving along a horizontal line. Its position as a function of time is given by $s(t) = t^3 - 3t^2 + 1$, $t \geq 0$ where s is in metres and t is in seconds.

a. Find the velocity and acceleration functions of the object.

$$v(t) = s'(t) = 3t^2 - 6t$$

$$a(t) = v'(t) = 6t - 6$$

b. At what time does the object change direction?

$$v(t) = 0$$

$$3t^2 - 6t = 0$$

$$3t(t - 2) = 0$$

$$t = 0, 2$$

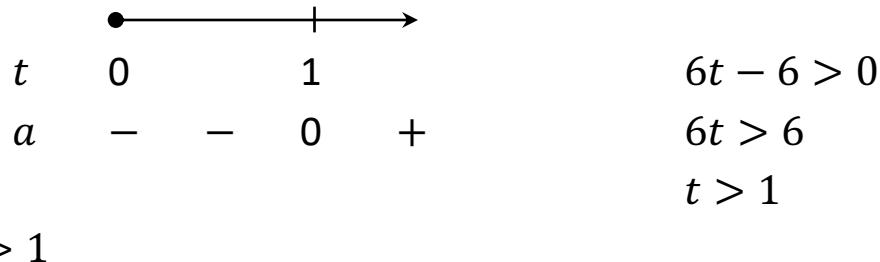
$v(t)$ changes sign at $t = 2$, \therefore object changes direction at $t = 2$

c. During which time intervals is the velocity of the object increasing?

$$a(t) = 0$$

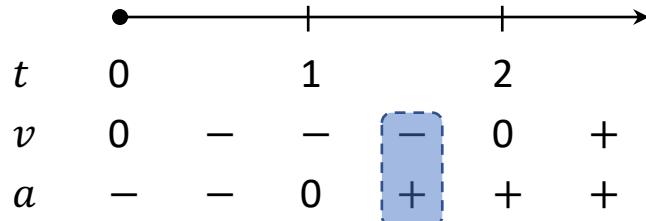
$$6t - 6 = 0$$

$$t = 1$$



d. During which time intervals is the speed of the object decreasing?

speed of object is decreasing when the signs of v and a are opposite



$$\therefore 1 < t < 2$$

e. Find the total distance travelled by the object during the first 4 seconds.

From b, the object changes direction at $t = 2$.

$$d_{0 \text{to} 2} = |s(2) - s(0)| = |-3 - 1| = 4$$

$$d_{2 \text{to} 4} = |s(4) - s(2)| = |17 - (-3)| = 20$$

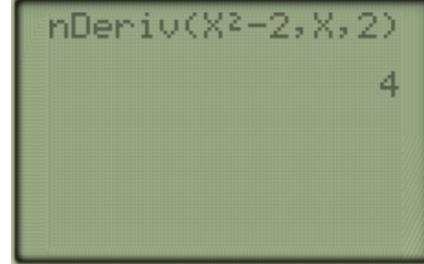
$$\text{total distance} = 4 + 20 = 24$$

\therefore total distance travelled in the first 4 seconds is 24 m

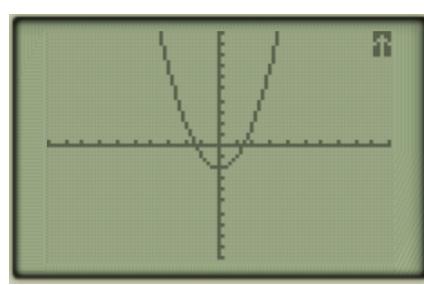
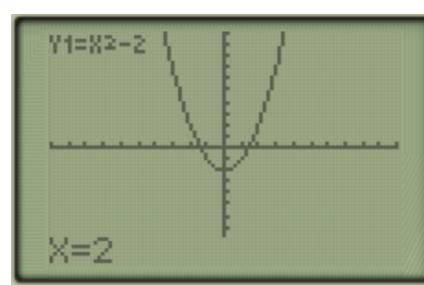
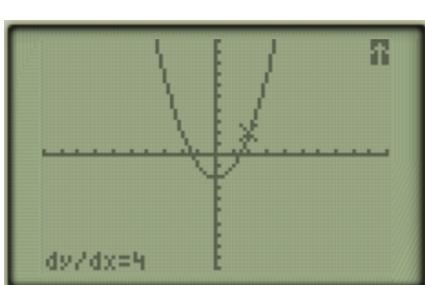
Graphing Calculator Example to Find Slope

Ex. Find the slope of the tangent line to the curve $y = x^2 - 2$ at $x = 2$.

Method 1: $nDeriv()$

1. The calculator menu is shown with the 'nDeriv(' option highlighted at the bottom.
2.  The input 'nDeriv(X^2-2,X,2)' is entered and the result '4' is displayed.

Method 2: Graph and Calculate

1. The calculator menu is shown with the 'Plot1' option highlighted at the top.
2.  The graph of the parabola $y = x^2 - 2$ is displayed on the calculator screen.
3. The calculator menu is shown with the 'dy/dx' option highlighted at the bottom.
4.  The graph of the parabola $y = x^2 - 2$ is shown with a tangent line drawn at the point where $x = 2$. The text 'Y1=X^2-2' and 'X=2' are displayed on the screen.
5.  The graph of the parabola $y = x^2 - 2$ is shown with a tangent line drawn at the point where $x = 2$. The text 'dy/dx=4' is displayed on the screen.

4.6 Homework:

Motion Along a Line (1-Dimension) Worksheet