

9.2 Permutations, $n P r$

A permutation is the fundamental counting principle put into a formula.

Permutations (Rule A)

Permutations (Rule A) must follow the following three restrictions:

1. The n objects are all different
2. No object can be repeated
3. Order makes a difference (ex. xy is different from yx)

A permutation is the arrangement of r objects with ($r \leq n$) can be written as $P(n, r) = nPr$

$$n P r = \frac{n!}{(n - r)!}$$

Note: Combinations and Permutations are similar but have a distinctive difference.

Permutations – order matters

Combinations – order does not matter

For example, **permutation** considers 538-2783 as being **different** from 583-2783, while **combinations** recognize the two as the **same**.

Another example, consider three people, Chris, Daryl, and Emma.

In a three-person committee, **combinations** considers these three people as one combination.

For a three-person executive committee with a president, vice-president, and treasurer, **permutations** would consider these people as ($3 P 3 = 3!$) 6 permutations.

Ex. How many different 3-digit numbers can be made using the numbers 1 through 7 by only using each number once?

7P3

$$= \frac{7!}{(7-3)!}$$

$$= \frac{7 \times 6 \times 5 \times 4!}{4!}$$

$$= 7 \times 6 \times 5 = 210$$

There are 210 permutations.

Ex. How many ways can a president, vice president and treasurer be selected from a class of 25 students?

25P3

$$= \frac{25!}{22!}$$

$$= 25 \times 24 \times 23$$

$$= 13800 \text{ ways}$$

Ex. 8 friends are going to watch a movie and want to sit together. In a row with 8 seats, how many ways can they pick their seats?

8 P 8

$$= 8!$$

$$= 40320$$

Ex. 8 friends are going to dinner and sit at an 8-person round table. How many ways can they sit together?

Because the table is round, the first person only has 1 choice (to sit in an open seat). The second person has 7 choices to sit relative to the first person. The third person has 6 choices relative to the first person...
7 P 7

$$= 7!$$

$$= 5040$$

Ex. 8 friends are going to watch a movie and want to sit together. One couple always have to sit together. In a row with 8 seats, how many ways can they pick their seats?

Treat the couple as one person, so it's like 7 people. But the couple have 2 sitting arrangements.

$$2 \text{ P } 2 \cdot 7 \text{ P } 7$$

$$= 2! \cdot 7!$$

$$= 10080$$

Ex. 8 friends are going to watch a movie and want to sit together. The couple from the previous question broke up and cannot sit together. In a row with 8 seats, how many ways can they pick their seats?

The total ways of 8 people sitting is $8! = 40320$

The total ways the couple sit together is $2! \cdot 7! = 10080$

The total ways the broke up couple avoid each other is the difference between the previous two sums = $40320 - 10080 = 30240$

Permutations (Rule B)

n objects where there are some objects that are the same

Comparing Permutations Rule A and B

Rule A: $abcd$

Rule B: $aabc$

Permutations (Rule B)

In the example above, $aabc$, we could consider the same objects to be different, so a_1a_2bc . So, the arrangement a_1a_2bc looks different from a_2a_1bc , but the two a 's indistinguishable. Thus, the two arrangements are considered the same.

In order to not count the repeats, we divide the total possible arrangements by the factorial of each repeat.

So, arrangements for $aabc$ would be $\frac{4!}{2!} = 12$

Ex. How many different 5-letter “words” can be formed from the letters “SWEET”?

E occurs twice, need to divide the possible outcomes by 2!

$$\frac{5!}{2!} = 60$$

Ex. How many different words can be formed from BANANA using all the letters?

There are multiple letters that repeat. A occurs 3 times, while N occurs twice. Need to divide the total by 3! and 2!.

$$\frac{6!}{3!2!} = 60$$

Ex. How many different words can be formed from MISSISSIPPI?

11 total letters, I occurs 4 times, S occurs 4 times, while P occurs twice.

$$\frac{11!}{4!4!2!} = 34650$$

Ex. Find the number of different ways of placing 16 balls in a row given that 4 are black, 3 are white, 7 are red and 2 are blue.

$$\frac{16!}{4!3!7!2!} = 14414400$$

9.2 Homework

1-21 odd