

Chapter 9 - Combinatorics

9.1 Combinatorics

Combinatorics is the branch of mathematics that is primarily concerned with counting.

Fundamental Counting Principle (The Multiplication Principle)

- If we can perform a first task in a different ways
- If we can perform a second task in b different ways
- If we can perform a third task in c different ways, and so on...

Then the first task followed by the second and so on can be performed in

$$a \cdot b \cdot c \dots \text{different ways}$$

These tasks do not affect each other; they are called **independent events**.

Examples Using the Multiplication Principle

Ex. A man has 2 shirts (red and yellow), 3 pairs of pants (black, white, and navy), and 2 pairs of shoes (green and orange). How many different outfits can he wear?

There are 2 choices of shirts. For each choice of shirts, there are 3 choices of pants. So, there are 2×3 possible combinations for shirts and pants. For each combination of shirts and pants, there are 2 choices of shoes.

Therefore, the possible number of outfits is $2 \times 3 \times 2 = 12$

Shirts	Pants	Shoes			
<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>			
2	•	3	•	2	= <u>12 ways</u>

Ex. A particular automobile has 4 different models, 3 sizes of motors and 6 colour schemes. How many different ways can an automobile be ordered?

Models	Motors	Colours				
4	×	3	×	6	=	72

There are 72 different ways

Ex. The first 4 questions on a quiz are true-false questions, while the next 6 questions are multiple choice with possible answers a, b, c, d, and e. How many different possible answer sequences are there for these 10 questions?

T/F: $2 \times 2 \times 2 \times 2 = 2^4 = 16$

M/C: $5 \times 5 \times 5 \times 5 \times 5 \times 5 = 5^6 = 15625$

Total $= T/F \times M/C$

$$= 16 \times 15625$$

$$= 250000$$

250,000 possible sequences

Ex. How many telephone numbers are available with the 778 prefix?

After the 778 prefix, each of the 7 numbers have 10 possibilities, assuming no restrictions.

7	7	8	-	—	—	—	—	—	—	—	
				#1	#2	#3	#4	#5	#6	#7	
				10	\times	10	\times	10	\times	10	\times

$$10^7 = 10,000,000 \text{ possible phone numbers}$$

Ex. How many different ways can 5 different books be arranged on a shelf?

The first book would have 5 choices. With 4 books left, the second choice would have 4 choices. Then the third book would have 3 choices, while the fourth and fifth books would have 2 and 1 choices respectively.

$$5 \times 4 \times 3 \times 2 \times 1 = 120 \text{ different ways}$$

Ex. How many different ways can 3 books be arranged on a shelf, using 5 different books?

$$5 \times 4 \times 3 = 60 \text{ different ways}$$

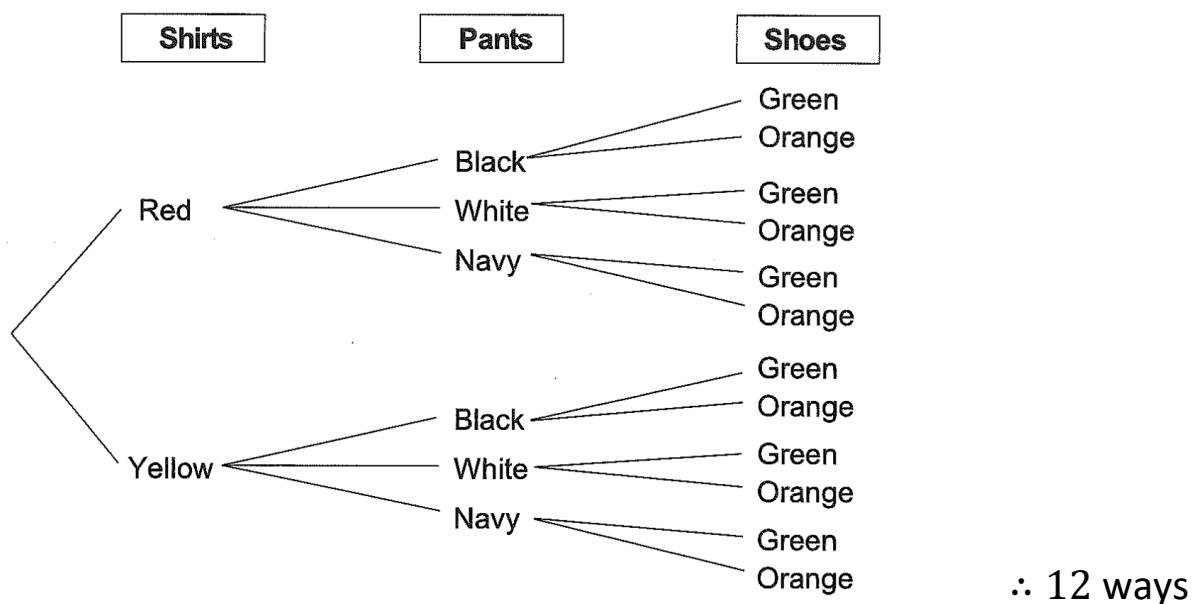
Tree Diagrams

We use tree diagrams to have a systematic way of counting the outcomes.

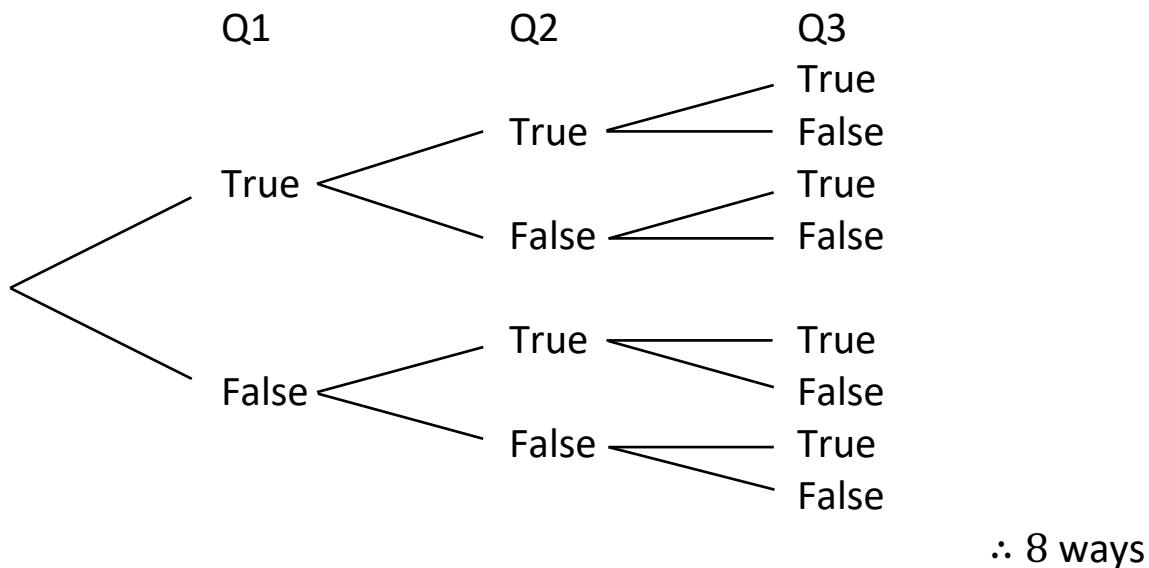
Examples Using Tree Diagrams

Ex. A man has 2 shirts (red and yellow), 3 pairs of pants (black, white, and navy), and 2 pairs of shoes (green and orange). How many different outfits can he wear?

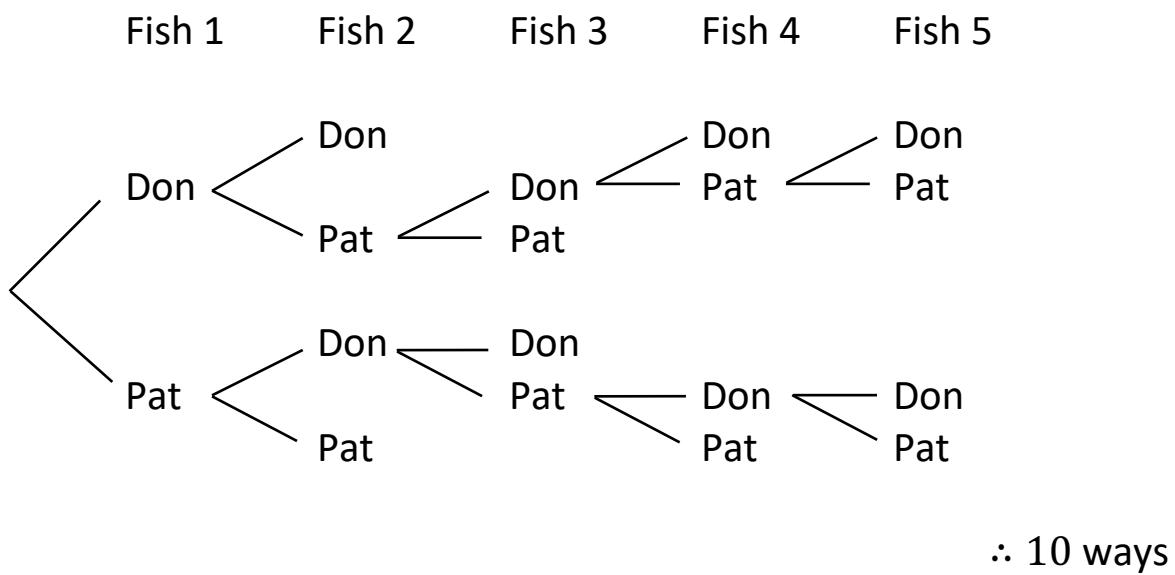
List out possible outcomes using a tree diagram



Ex. How many ways can a 3 item true-false test be answered?



Ex. Don and Pat are in a fishing tournament. The first person to catch 2 fish in a row or 3 fish in total wins the tournament. How many different outcomes are possible?



Outcomes:

DD, PP, DPP, PDD, DPDD, PDPP, DPDPD, DPDPP, PDPDD, PDPDP

Factorial Notation!

The product of the consecutive positive integers from 1 to n is given a special name, n factorial, which is written $n!$ $(n \geq 0)$

$$0! = 1 \quad \text{by definition}$$

$$1! = 1$$

$$2! = 2 \times 1 = 2$$

$$3! = 3 \times 2 \times 1 = 6$$

$$4! = 4 \times 3 \times 2 \times 1 = 24$$

⋮

$$n! = n(n - 1)(n - 2) \dots 3 \cdot 2 \cdot 1$$

Ex. Evaluate 5!

$$5!$$

$$= 5 \times 4 \times 3 \times 2 \times 1$$

$$= 120$$

Ex. How many different “words” can be made using all the letters in abcde?

This is the exact same situation as the problem with arranging 5 books. First book has 5 choices, second book as 4 choices, and etc.

$$5! = 120$$

There are 120 “words” that can be constructed from abcde

Ex. A three-digit password is made from using numbers 0-9.

- How many possible passwords are there if there are no restrictions

$$10 \cdot 10 \cdot 10 \cdot 10$$

$$= 10000$$

- How many possible passwords are there if none of the numbers be repeated?

$$10 \cdot 9 \cdot 8 \cdot 7$$

$$= 5040$$

- How many possible passwords are there if a number can be used up to 3 times?

$$10 \cdot 10 \cdot 10 \cdot 10 - 10$$

$$= 9990$$

Ex. Simplify and the evaluate $\frac{86!}{84!}$

$$\frac{86!}{84!}$$

Re-write 86! as $86 \times 85 \times 84!$

$$= \frac{86 \times 85 \times 84!}{84!}$$

Cancel out 84! from the numerator and denominator

$$= 86 \times 85$$

$$= 7310$$

Ex. Simplify and then evaluate $\frac{20!-18!}{18!}$

$$\frac{20!-18!}{18!}$$

Factor out 18!

$$= \frac{18!(20 \times 19 - 1)}{18!}$$

Reduce 18! from numerator and denominator

$$= 20 \times 19 - 1$$

$$= 380 - 1$$

$$= 379$$

Ex. Simplify $\frac{(n+1)!}{(n-1)!}$

$$\frac{(n+1)!}{(n-1)!}$$

$$= \frac{(n+1)(n)(n-1)!}{(n-1)!}$$

Need to re-write the larger factorial so it has a common factor with the smaller factorial
 $(n+1)! = (n+1)(n)(n-1)!$

$$= (n+1)(n)$$

$$= n^2 + n$$

Ex. Simplify $\frac{n!}{(n-2)!+(n-3)!}$

$$= \frac{n(n-1)(n-2)(n-3)!}{(n-2)(n-3)!+(n-3)!}$$

$$= \frac{n(n-1)(n-2)}{(n-2)+1} = \frac{n(n-1)(n-2)}{n-1}$$

$$= n(n-2) = n^2 - 2n$$

Solving Factorial Equations

Ex. Solve $\frac{n!}{(n-2)!} = 3!$

$$\frac{n(n-1)(n-2)!}{(n-2)!} = 6$$

$$n(n-1) = 6$$

$$n^2 - n - 6 = 0$$

$$(n+2)(n-3) = 0$$

$$n = -2, 3 \quad \text{reject } -2$$

$$n = 3$$

Ex. Solve $3! (n+1)! = 5! (n-1)!$

$$6(n+1)(n)(n-1)! = 120(n-1)!$$

$$(n+1)(n) = 20 \quad \text{able to cancel out } (n-1)!, \text{ because it } = 1$$

$$n^2 + n - 20 = 0$$

$$(n+5)(n-4) = 0$$

$$n = -5, 4 \quad \text{reject } -5$$

$$n = 4$$

9.1 Homework

7.1 pg 451 # 2, 3, 5, 8, 9, 12, 16, 17bd, 18bcf, 19