Chapter 5 – Linear Equations

5.1 Different Forms of Linear Equations

Recall:

Slope-Intercept form v = mx + b

Ax + By + C = 0General Form

Ax + By = CStandard Form

A, B, C are integers and $A \geq 0$

Converting from standard to slope-intercept form, y = mx + b

Isolate y in Ax + By = C.

Convert to slope intercept form, 3x - 5y = 25. Ex.

> isolate the variable y

$$-5y = -3x + 25$$

$$\frac{-5y}{-5} = \frac{-3x}{-5} + \frac{25}{-5}$$

$$y = \frac{3}{5}x - 5$$

Converting from slope-intercept to standard form, Ax + By = C

Put x and y on one side, and ensure all coefficients are integers, and Amust be positive.

Ex. Convert to standard form,
$$y = \frac{2}{3}x + \frac{11}{4}$$
.

$$-\frac{2}{3}x + y = \frac{11}{4}$$

$$\left[-\frac{2}{3}x + y = \frac{11}{4} \right] \times -12$$
 multiply both sides by -12

$$(-12) \times -\frac{2}{3}x + (-12) \times y = (-12) \times \frac{11}{4}$$

$$8x - 12y = -33$$

Find the equation of the linear function (y = mx + b)

Ex. A line has slope of $\frac{4}{3}$ and passes through (5, 8)

Option 1: using
$$y = mx + b$$

 $y = \frac{4}{3}x + b$ substitute in the slope

Sub (5, 8) into the equation, and solve for b

$$8 = \frac{4}{3}(5) + b$$

$$8 = \frac{20}{3} + b$$

$$8 - \frac{20}{3} = b$$

$$b = \frac{4}{3}$$

$$\therefore y = \frac{4}{3}x + \frac{4}{3}$$

Option 2: using
$$y - y_1 = m(x - x_1)$$

 $m = \frac{4}{3}$ (5,8)

$$y - 8 = \frac{4}{3}(x - 5)$$
 this is in point-slope form

By isolating the y, the equation will be in slope-intercept form

$$y - 8 = \frac{4}{3}x - \frac{20}{3}$$

$$y = \frac{4}{3}x - \frac{20}{3} + 8$$

$$y = \frac{4}{3}x + \frac{4}{3}$$

Ex. Find the equation of the line that passes through (2,4) and (4,-5).

Find the slope first

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$=\frac{-5-4}{4-2}$$

$$=-\frac{9}{2}$$

Use point-slope form with $m = -\frac{9}{2}$ and (2, 4)

$$y - 4 = -\frac{9}{2}(x - 2)$$

$$y - 4 = -\frac{9}{2}x + 9$$

$$y = -\frac{9}{2}x + 9 + 4$$

$$y = -\frac{9}{2}x + 13$$

Homework

5.1 # 2 - 11 bcf...

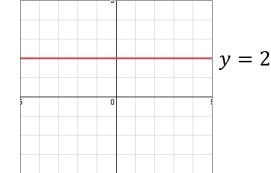
5.2 - Special Cases of Linear Equations

Horizontal Lines

Horizontal lines all have a slope equal to 0.

$$\therefore$$
 for $y = mx + b$, where $m = 0$

$$y = 0x + b$$
$$y = b$$



All horizontal line equations have the form:

$$y = b$$

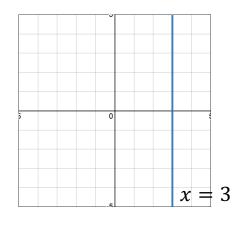
b is the y-intercept

Vertical Lines

Vertical lines all have an undefined slope (or equal to infinity $\pm \infty$).

$$x = k$$

k is the x-intercept



Write the Equation of a line given two points, y = mx + b

Ex.
$$(4,-11)$$
 and $(-5,6)$

$$m = \frac{6 - (-11)}{-5 - 4} = \frac{17}{-9} = -\frac{17}{9}$$

$$y - y_1 = -\frac{17}{9}(x - x_1)$$

$$(-5,6): y - 6 = -\frac{17}{9} (x - (-5))$$

$$y = -\frac{17}{9}x - \frac{85}{9} + 6$$

$$y = -\frac{17}{9}x - \frac{31}{9}$$

(4, -11):

$$y + 11 = -\frac{17}{9}(x - 4)$$

$$y = -\frac{17}{9}x + \frac{68}{9} - 11$$

$$y = -\frac{17}{9}x - \frac{31}{9}$$

Parallel and Perpendicular Lines

When two lines are parallel, they all have the same slope

For $y_1 = 3x - 5$ and $y_2 = 3x + 1$, are the lines parallel, perpendicular, Ex. or neither?

$$m_1 = 3$$
 $m_2 = 3$

 $\therefore y_1$ and y_2 are parallel

For $3x + 4y_1 = 5$ and $y_2 = -\frac{3}{4}x + 3$, are the lines parallel, Ex. perpendicular, or neither?

$$m_1 = -\frac{3}{4} \qquad m_2 = -\frac{3}{4}$$

$$m_2 = -\frac{3}{4}$$

 $\therefore y_1$ and y_2 are parallel

When two lines are perpendicular, their slopes are negative reciprocals of each other

For $y_1 = \frac{2}{3}x + 2$ and $y_2 = -\frac{3}{2}x - 9$, are the lines parallel, perpendicular, or neither?

$$m_1 = \frac{2}{3}$$
 $m_2 = -\frac{3}{2}$

If $m_1 \cdot m_2 = -1$, then the lines are perpendicular

$$\frac{2}{3} \cdot -\frac{3}{2} = -1$$

 $\therefore y_1$ and y_2 are perpendicular

Ex. For 4x - 5y = 6 and 5x + 4y = 9, are the lines parallel, perpendicular, or neither.

Option 1: convert both to y = mx + b

Option 2: determine the slope for each using $m = -\frac{A}{B}$

$$L_1$$
: $4x - 5y = 6$ L_2 : $5x + 4y = 9$ $m_1 = -\frac{4}{-5} = \frac{4}{5}$ $m_2 = -\frac{5}{4}$

Because the slopes are negative reciprocals of each other, the two lines are perpendicular $\boldsymbol{\bot}$

If
$$m_1 \cdot m_2 = -1$$
 , then the lines are perpendicular $rac{4}{5} \cdot -rac{5}{4} = -1$

Ex. What is the slope of all ordered pairs of the form $\left(x, \frac{3}{2}x\right)$?

$$\left(x, \frac{3}{2}x\right)$$
 same as (x, y)

So,
$$y = \frac{3}{2}x$$

$$\therefore m = \frac{3}{2}$$

Ex. What is the slope of all ordered pairs of the form $(\frac{1}{2}x, \frac{3}{4}x)$?

$$\left(\frac{1}{2}x, \frac{3}{4}x\right) = \left(\frac{1}{2}x, \frac{3}{2}\left(\frac{1}{2}x\right)\right) \quad \text{same as } (x, y)$$

So,
$$y = \frac{3}{2}x$$

$$\therefore m = \frac{3}{2}$$

or

Let
$$x = 0 \implies (0,0)$$
 $x = 4 \implies (2,3)$

Use slope equation to find the slope

$$m = \frac{3-0}{2-0} = \frac{3}{2}$$

5.2 Homework:

1-5, 6bcf..., 7bcf..., 8bcf..., 10, 11, 14, 15, 18

5.3 - Equations of Parallel and Perpendicular Lines

Ex. Write the equation of a line (y = mx + b) that is parallel to 7x + 5y = 35 and passes through the point A(21, 4).

$$m = -\frac{A}{B} = -\frac{7}{5}$$
 use slope formula for standard form

$$y - y_1 = m(x - x_1)$$
 point-slope form

$$y - 4 = -\frac{7}{5}(x - 21)$$

$$y = -\frac{7}{5}x + \frac{147}{5} + 4$$

$$y = -\frac{7}{5}x + \frac{167}{5}$$

slope-intercept form

Convert to standard form Ax + By = C

$$\frac{7}{5}x + y = \frac{167}{5}$$

Reminder: A, B, and C must be integers and $A \ge 0$ So, multiply both sides by the LCD, 5

$$7x + 5y = 167$$

standard form

Ex. Write the equation of a line (in y = mx + b) that is perpendicular to 6x - 3y = 1 and passes through (5, 2).

$$m = -\frac{6}{-3} = 2$$

$$m_{\perp} = -\frac{1}{2}$$

$$y - y_1 = m(x - x_1)$$

$$y - 2 = -\frac{1}{2}(x - 5)$$

point-slope form

$$y = -\frac{1}{2}x + \frac{9}{2}$$

slope-intercept form

Convert to standard form

$$\frac{1}{2}x + y = \frac{9}{2}$$

$$x + 2y = 9$$

standard form

Note: Final answers must be in slope-intercept form or standard form

Ex. Find the equation of a line perpendicular to 2x - 3y = 7 with the same y-intercept as 5x - 2y = 10. Leave answer in both slope-intercept and standard form.

Find perpendicular slope, line is perpendicular to 2x - 3y = 7

$$m = -\frac{A}{B} = -\frac{2}{-3} = \frac{2}{3}$$

$$m_{\perp} = -\frac{3}{2}$$

y-intercept:

Same *y*-intercept as 5x - 2y = 10

Recall, y-intercept occurs when x = 0

$$5(0) - 2y = 10$$

$$-2y = 10$$

$$y = -5$$

y-intercept

$$\therefore y = -\frac{3}{2}x - 5$$

slope-intercept form

Convert to standard form

$$\frac{3}{2}x + y = -5$$

$$3x + 2y = -10$$

standard form

5.3 Homework

#1-5 bcf..., 7, 8, 11, 12

5.4 - Linear Applications and Modelling

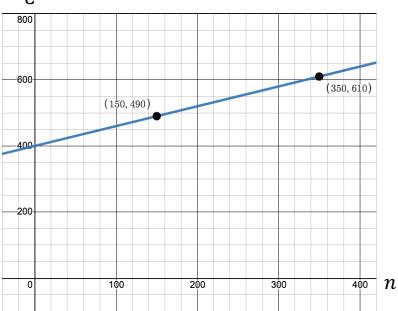
- Ex. It costs a popcorn vendor \$490 to make 150 bags of popcorn, and \$610 to make 350 bags.
 - a. Graph the linear relation

Cost depends on the number of bags

: cost is dependent and number of bags is independent

Two coordinates are: (150, 490) and (350, 610)

 \mathcal{C}



b. Find the cost equation

Let
$$C = \cos t$$
 and $m = \text{number of bags}$ $m = \frac{610 - 490}{350 - 150} = \frac{120}{200} = \frac{3}{5}$ or $m = 0.6$

∴ it costs \$0.60 per bag (this is rate)

$$C - 490 = 0.6(n - 150)$$

$$C = 0.6n - 90 + 490$$

$$C = 0.6n + 400$$

c. Determine the fixed cost.

The fixed cost is the cost when you make 0 bags

$$C = 0.6(0) + 400$$

$$C = 400$$

The fixed cost is \$400

d. Determine the cost of making 800 bags of popcorn

$$C = 0.6(800) + 400$$

$$C = 480 + 400$$

$$C = 880$$

It costs \$880 to make 800 bags.

e. How much would you have to charge per bag to break even when making 800 bags of popcorn?

$$Price = \frac{\$880}{800} = \$1.10$$

The vendor should charge \$1.10 per bag to break even.

f. When making 800 bags of popcorn, how much should each bag of popcorn be sold at to make a profit of \$720?

Revenue =
$$880 + 720 = $1600$$

Price per bag =
$$\frac{$1600}{800 \text{ bags}}$$
 = \$2/bag

The price per bag would be \$2

Or

g. How many bags of popcorn can be made with \$6000?

$$6000 = 0.6n + 400$$

$$5600 = 0.6n$$

$$n = \frac{5600}{0.6}$$

$$n = 9333.\overline{3} \approx 9333$$

∴ 9333 bags can be made

Homework:

5.4 # 2-12 even, 15, 16

Recall function notation:

$$f(x)$$
 - f of x

f(x) is used to substitute y

$$y = 3x - 4$$
 linear equation $f(x) = 3x - 4$ linear function

If f(x) = 3x - 4, what does f(2) represent?

To find the value of f(2), we substitute 2 for x in 3x - 4.

$$f(2) = 3(2) - 4$$

 $f(2) = 6 - 4$
 $f(2) = 2$ also means (2, 2)

Ex. For f(x) = 3x - 4, what value of x gives f(x) = 26?

We substitute 26 for f(x)

$$26 = 3x - 4$$

$$3x - 4 = 26$$

$$3x = 30$$

$$x = 10$$

Ex. Given f(2) = 5 and f(-4) = 7, determine the slope of f(x).

$$(2,5)$$
 and $(-4,7)$

$$m = \frac{7-5}{-4-2}$$

$$=\frac{2}{-6}$$

$$=-\frac{1}{3}$$

Ex. Given f(x) = 3x - 9, determine the following:

a.
$$f(4x)$$

= $3(4x) - 9$
= $12x - 9$

b.
$$f(x+h)$$

= $3(x+h) - 9$
= $3x + 3h - 9$

c.
$$f(x + 1)$$

= $3(x + 1) - 9$
= $3x + 3 - 9$
= $3x - 6$

Ex. Given f(x) = 3x - 2Determine $\frac{f(x+h)-f(x)}{h}$, $h \neq 0$

f(x+h) = 3(x+h) - 2

$$f(x) = \frac{3x - 2}{h}$$
$$= \frac{f(x+h) - f(x)}{h}$$

$$=\frac{3(x+h)-2-(3x-2)}{h}$$

$$= \frac{3x + 3h - 2 - 3x + 2}{h}$$

$$=\frac{3h}{h}$$

$$= 3$$

Ex. Given
$$f(x) = x^2 - 2x$$

Determine $\frac{f(x+h)-f(x)}{h}$, $h \neq 0$

 $f(x+h) = (x+h)^2 - 2(x+h)$

$$f(x) = \frac{x^2 - 2x}{x^2}$$

$$= \frac{\frac{f(x+h) - f(x)}{h}}{h}$$

$$= \frac{\frac{(x+h)^2 - 2(x+h) - (x^2 - 2x)}{h}}{h}$$

$$= \frac{x^2 + 2xh + h^2 - 2x - 2h - x^2 + 2x}{h}$$

$$= \frac{2xh + h^2 - 2h}{h}$$

$$= 2x + h - 2$$

Homework

5.5 # 1, 2-6 bcf, 7-12 bc, 13 bcf, 14