[2] 1. Determine two co-terminal angles with the given θ . Round to 3 decimal places if necessary.

[1] a. 324°

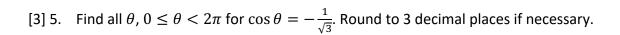
[1] b. 0.123

[2] 2. Determine the quadrant in which θ lies for the following.

[1] a.

 $\sec \theta < 0$, $\tan \theta > 0$

[1] b. $\sin \theta > 0$, $\csc \theta < 0$


[2] 3. Determine the coordinates of the point at the given distance from the origin in the stated quadrant, if θ is its position angle.

[1] a.

15, quadrant II, $\cos \theta = -\frac{4}{5}$

[1] b. 6x, quadrant III, $\tan \theta = 1$

[2] 4. For an arc with a radius of 1 cm and sector area of $\frac{\pi}{5}$ cm², determine the arc length of the sector.

[3] 6. Find all
$$\theta$$
, $0^{\circ} \le \theta \le 360^{\circ}$ for $-\tan \theta + 2 = \tan \theta$. Round to 1 decimal place if necessary.

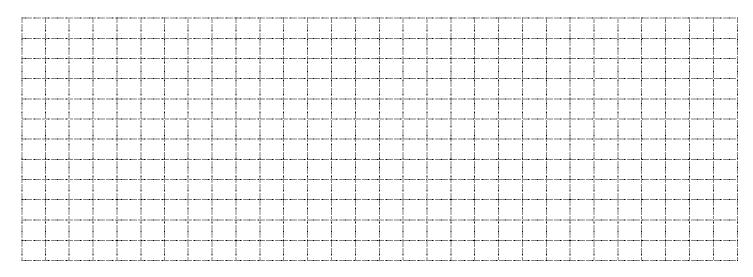
[4] 7. Determine the exact value of the following trigonometric functions.

[2] a.
$$\sin \frac{5\pi}{4}$$

[2] b.
$$\tan \frac{17\pi}{3}$$

[4] 8. Find the values of $\sin \theta$, $\cos \theta$, and $\cot \theta$ if θ is an angle in standard position whose terminal side is the graph 7x - y = 0, $x \le 0$. Exact answers only.

[8] 9. For a cosine function where a maximum value of 4 occurs at $x=\frac{\pi}{4}$ and the next minimum value of -2 occurs at $x=\frac{3\pi}{4}$


[1] a. Determine the period.

[1] b. Determine the amplitude.

[1] c. Determine the phase shift.

[1] d. Determine the vertical displacement.

[2] e. Graph 2 periods of the function that is described above. Include all appropriate labels.

[2] f. Write an equation in the form $y = a \sin b(x - c) + d$ for the least non-negative real number c, with a > 0 and b > 0 for the graph above.

[10] 10. Mr. Kwan's alertness level throughout the day can be modeled using a sinusoidal function. He has a maximum alertness level of 90% at 8:00 am and a minimal alertness level of 20% at 11:30 am.	
[4] a.	Write a sinusoidal function that describes Mr. Kwan's alertness level starting at 8:00 am.
[1] b.	Determine Mr. Kwan's alertness level at 7:00 am (assuming he is awake!). Round to the nearest percent.
[3] c.	Determine the amount of time Mr. Kwan's alertness level is above 70% during the school day from 8:00 am to 4:00 pm. Round to the nearest minute.
[2] d.	During the school day, at what time(s) will Mr. Kwan's alertness level be at 50%. Round to the nearest minute.

Pre-Calculus 12 M. Kwan