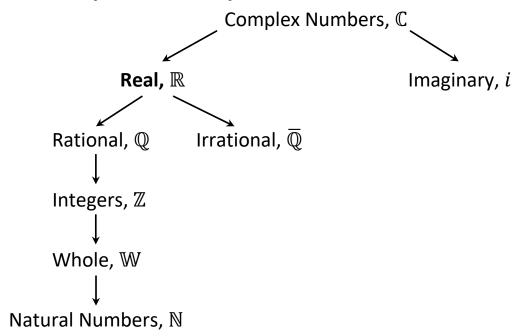
Chapter 1 - Real Numbers

1.1 Number Systems

Number System Hierarchy



Complex Number System

The **complex number system** extends the **real number system** to include solutions to equations that have no real solutions—such as the square root of a negative number.

What is a Complex Number?

A complex number is a number in the form: z = a + bi

For the complex number a+bi, a is called the **real part**, and b is called the **imaginary part**. i is called the imaginary unit where $i^2=-1$.

Although the main focus is on the real number system, a basic understanding of imaginary numbers (and complex numbers) will help explain some results that we will encounter later on.

Real Numbers, \mathbb{R}

The set of **real numbers**, \mathbb{R} , is composed of **rational numbers** and **irrational numbers**.

- Each real number corresponds to one point on a real number line

Rational Numbers, Q

Rational numbers, \mathbb{Q} , is the set of numbers that:

- are terminating decimal numbers
- are non-terminating, repeating decimal numbers

Rational numbers are usually referred to as numbers that can be written as a fraction, in the form $\frac{a}{b}$ where a and b are integers, and $b \neq 0$

Ex. Write the following rational numbers as fractions in the form $\frac{a}{b}$ 5, 7.2, $\sqrt{36}$, $\frac{3.5}{4}$, 2. $\overline{13}$.

$$5 = \frac{5}{1}$$

$$7.2 = \frac{72}{10} = \frac{36}{5}$$

$$\sqrt{36} = 6 = \frac{6}{1}$$

$$\frac{3.5}{4} = \frac{7}{8}$$

$$2.\,\overline{13} = 2\frac{13}{99} = \frac{211}{99}$$

Irrational Numbers, $\overline{\mathbb{Q}}$

Irrational numbers, $\overline{\mathbb{Q}}$, is the set of numbers that are **non**-terminating, **non**-repeating decimal numbers.

- Irrational numbers **cannot** be written as a fraction in the form $\frac{a}{b}$ where a and b are \mathbb{Z} , and $b \neq 0$

So basically, irrational numbers are real numbers that are not rational.

Examples of irrational numbers

$$\pi = 3.1415926 \dots$$

$$\sqrt{24} = 4.8989794 \dots$$

$$e = 2.7182818 \dots$$

$$\sqrt[3]{18} = 2.6207413 \dots$$

Integers, \mathbb{Z}

Integers, \mathbb{Z} , is the set of positive and negative whole numbers, and also including zero.

$$\mathbb{Z} = \{ \dots, -2, -1, 0, 1, 2, \dots \}$$

Whole Numbers, \mathbb{W}

Whole numbers, W, is the set of whole numbers

$$W = \{0, 1, 2, 3, ...\}$$

Natural Numbers, N

Natural Numbers, \mathbb{N} , is the set of whole numbers **not including 0**; also known as "counting numbers"

$$\mathbb{N} = \{1, 2, 3, \dots \}$$

Ex. Name the set of numbers to which each number belongs.

a.
$$\sqrt{81}$$

$$= 9$$

b.
$$\sqrt{3.6}$$
 $\approx 1.8973 ...$

$$\mathbb{N}, \mathbb{W}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$$

$$\overline{\mathbb{Q}}$$
, \mathbb{R}

$$c. \qquad -\sqrt{\frac{1}{4}}$$
$$= -\frac{1}{2}$$

d.
$$\sqrt{-0.36}$$

= $\sqrt{0.36}\sqrt{-1} = 0.6i$

$$\mathbb{Q}$$
, \mathbb{R}

Real Number Operations

The most common operations that students have encountered up to now are addition, subtraction, multiplication, division, and exponents. There is another useful operation that will occur periodically, **absolute value**.

What is absolute value?

The **absolute value** of a real number is the distance from the number to zero. Since distances cannot be negative, the absolute value of a real number is always positive.

Ex. Simplify the following.

$$= 0.15$$

d.
$$\left| -\frac{22}{9} \right|$$

$$=\frac{22}{9}$$

e.
$$|5 - 9|$$

f.
$$|7| - 12$$

$$= |-4|$$

$$= 7 - 12$$

$$=4$$

$$= -5$$

1.1 Homework

1 bcf..., 2-4 bcf, 5-6 bcf...

1.2 GCF and LCM

Prime and Composite Numbers

Prime numbers are numbers that can be divisible by only 1 and itself 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, ...

Composite numbers are whole numbers that has a divisor other than 1 and itself

4, 25, 100, 63, ...

Zero and **one** are neither prime nor composite

- Ex. Determine if it is a composite number or not
 - a. 3it is prime, therefore not composite
 - b. 10 it is composite, divisible by 1, 2, 5 and 10
 - c. 18 it is composite, divisible by 1, 2, 3, 6, 9 and 18
 - d. 23it is prime, therefore not composite

Prime Factorization

Prime factorization is the process of re-writing a number as a product of prime numbers only.

Ladder and tree methods can be used for prime factorization

Ex. Write the prime factorization of 24

$$24 = 2 \times 2 \times 2 \times 3$$
 or $24 = 2^3 \times 3$

Ex. Write the prime factorization of 60

$$60 = 2 \times 2 \times 3 \times 5$$
 or $60 = 2^2 \times 3 \times 5$

GCF – Greatest Common Factor

GCF is the largest number that goes into 2 or more numbers evenly.

Ex. Determine GCF of 24 and 60.

One approach is to re-write both 24 and 60 with prime factorization and then find the factors that exist in both numbers.

$$24 = 2 \times 2 \times 2 \times 3$$

$$60 = 2 \times 2 \times 3 \times 5$$

The GCF is the product of the shared common factors.

$$\therefore \mathsf{GCF} = 2 \times 2 \times 3 = 12$$

This can be done by the ladder method on both numbers as well.

Ex. Determine GCF of 100 and 120.

$$\therefore GCF = 2 \times 2 \times 5 = 20$$

Ex. Determine GCF of 32, 80, 128

$$\therefore GCF = 2 \times 2 \times 2 \times 2 = 16$$

LCM – Least Common Multiple

The smallest number that divides evenly by a group of numbers.

Ex. Determine LCM of 15 and 18

One approach is to list multiples of each number until a common number appears for both numbers

Ex. Determine the LCM of 60 and 72

The LCM is product of the all the numbers in the outside column and bottom row.

$$\therefore$$
 LCM = 2 x 2 x 3 x 6 x 5 = 360

Ex. Determine the LCM of 42 and 56

$$\therefore$$
 LCM = 2 x 3 x 4 x 7 = 168

Ex. Determine the LCM of 27, 30, 36

Note: when determining the LCM of 3 or more numbers, the common factor needs only to apply to 2 of the numbers

$$\therefore$$
 LCM = 2 x 3 x 3 x 3 x 5 x 2 = 540

Ex. Determine the LCM of 8, 14, 15

$$\therefore$$
 LCM = 2 x 4 x 7 x 15 = 840

1.2 Homework

2 bcfg, 6 bcf..., 8 bcf..., 9 bcf..., 10 bcf..., 12, 15, 16, 19

1.3 Squares and Square Roots

Note: Roots and Radicals are used to refer to the same thing

Perfect Squares and Square Roots

In the statement, $5^2 = 25$, 5^2 is the **squared number** while 25 is the **perfect square.**

Square Roots of Perfect Squares

We know $\sqrt{25} = 5$, but why?

Recall, $\sqrt{25}$ is the same as $\sqrt{5^2}$ because $25 = 5^2$

A "square" and a square root are inverse operations; they cancel each other out

$$\sqrt{25}$$

$$=\sqrt{5^2}$$

$$= 5$$

Alternatively,

$$\sqrt{25}$$

$$= \left(\sqrt{5}\right)^2$$

Ex. Simplify
$$\sqrt{16x^4y^2}$$

$$= \sqrt{16} \cdot \sqrt{x^4} \cdot \sqrt{y^2}$$

$$=4x^2y$$

Perfect cubes and cube roots

In the statement $4^3 = 64$, 4^3 is the **cubed number** while 64 is the **perfect cube**.

Why is $\sqrt[3]{64}$ is equal to 4?

Similar to squares and square roots, a "cube" and cube root are inverse operations.

$$\sqrt[3]{64}$$

$$=\sqrt[3]{4^3}$$

or

$$\sqrt[3]{64}$$

$$= \left(\sqrt[3]{4}\right)^3$$

Ex. Simplify
$$\sqrt[3]{125x^9y^{12}}$$

$$= \sqrt[3]{125} \cdot \sqrt[3]{x^9} \cdot \sqrt[3]{y^{12}}$$

$$=5x^3y^4$$

Using prime factorization to evaluate square roots of perfect squares

1

Ex. Evaluate $\sqrt{144}$ using prime factorization.

$$\sqrt{144} = \sqrt{2^2} \times \sqrt{2^2} \times \sqrt{3^2}$$

$$= 2 \times 2 \times 3 = 12$$

Ex. Evaluate $\sqrt[3]{64}$ using prime factorization

$$\sqrt[3]{64} = \sqrt[3]{2^3} \times \sqrt[3]{2^3}$$

$$= 2 \times 2 = 4$$

Evaluate by factorizing a radical

Ex. Evaluate $-\sqrt{72900}$ without a calculator

$$= -\sqrt{729}\sqrt{100}$$

$$= -\sqrt{81}\sqrt{9}\sqrt{100}$$

$$= -(9)(3)(10)$$

$$= -270$$

Ex. Evaluate $\sqrt[3]{216000}$ without a calculator

$$= \sqrt[3]{216} \sqrt[3]{1000}$$

$$=(6)(10)$$

$$= 60$$

Ex. Evaluate $\sqrt{0.0729}$ without a calculator

$$= \sqrt{729} \cdot \sqrt{0.0001}$$

$$= 27 \cdot 0.01$$

$$= 0.27$$

Evaluate $\sqrt[3]{0.216}$ without a calculator Ex.

$$= \sqrt[3]{216} \cdot \sqrt[3]{0.001}$$

$$= 6 \cdot 0.1$$

$$= 0.6$$

A sphere has a volume of 288π ft³. Determine the diameter of the Ex. sphere.

$$V = \frac{4}{3}\pi r^3 \qquad \qquad V = 288\pi$$

$$V = 288\pi$$

$$\frac{4}{3}\pi r^3 = 288\pi$$

$$\frac{4}{3}r^3 = 288$$

$$\frac{3}{4} \times \frac{4}{3} r^3 = 288 \times \frac{3}{4}$$

$$r^3 = 216$$

$$r^3 = 6^3$$

$$\sqrt[3]{r^3} = \sqrt[3]{6^3}$$

$$r = 6$$

$$\therefore d = 2r = 12$$

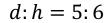
the diameter of the sphere is 12 ft

Ex. A right-angle cone has a volume of 100π cm³. The ratio of the diameter to the height cone is 5:6. Determine the surface area of the cone.

$$V = \frac{1}{3}\pi r^2 h$$

$$V = 100\pi$$

$$SA = \pi r s + \pi r^2$$



$$2r: h = 5: 6$$

$$\frac{2r}{h} = \frac{5}{6}$$

$$5h = 12r$$

$$h = \frac{12}{5}r$$

$$\frac{1}{3}\pi r^2 h = 100\pi$$

$$\frac{1}{3}\pi r^2 \left(\frac{12}{5}r\right) = 100\pi$$

$$\frac{4}{5}r^3 = 100$$

$$r^3 = 125$$

$$\sqrt[3]{r^3} = \sqrt[3]{5^3}$$

$$r = 5$$

$$h = \frac{12}{5}(5) = 12$$

Use Pythagorean Theorem to calculate the slant height s.

$$s^2 = 5^2 + 12^2$$

$$s^2 = 169$$

 $s = \pm 13$, reject the negative

$$s = 13$$

$$SA = \pi r s + \pi r^2$$

$$= \pi(5)(13) + \pi(5)^2$$

$$=65\pi + 25\pi$$

$$= 90\pi \text{ cm}^2$$

 \therefore the surface area of the cone is 90π cm²

1.3 Homework

1.4 Rational and Irrational Numbers

Roots of Non-Perfect Squares and Non-Perfect Cubes

We will investigate how to deal with roots of non-perfect squares and non-perfect cubes.

We will look at two methods of dealing with irrational numbers: **approximation** and **simplifying** (exact value). Section 1.4 will investigate approximation, while Section 1.6 looks at simplifying.

Linear Approximation (from grade 8 and 9)

Ex. Estimate $\sqrt{45}$ to 1 decimal place using linear approximation.

Since $\sqrt{45}$ is between $\sqrt{36}$ and $\sqrt{49}$, we can conclude that the approximate value of $\sqrt{45}$ is between 6 and 7.

$$\therefore \sqrt{45} \approx 6.$$

To approximate the decimal place, we need to do the following calculation:

$$\frac{45-36}{49-36} = \frac{9}{13}$$

$$\frac{9}{13} = 0.6923 \dots \approx 0.7$$

$$\therefore \sqrt{45} \approx 6.7$$

We apply similar principles from the example above to cube roots.

Ex. Approximate $\sqrt[3]{100}$ to 1 decimal place using linear approximation.

 $\sqrt[3]{100}$ is between $\sqrt[3]{64}$ and $\sqrt[3]{125}$

$$\therefore \sqrt[3]{100} \approx 4.$$

$$\frac{100 - 64}{125 - 64} = \frac{36}{61}$$

$$\frac{36}{61} = 0.5901 \dots \approx 0.6$$

$$\therefore \sqrt[3]{100} \approx 4.6$$

Using Approximate Values of Radicals to Approximate Similar Radicals

Given $\sqrt{54}\approx 7.35$ and $\sqrt{540}\approx 23.24$, determine the value of the following square roots.

Ex. Estimate $\sqrt{5400}$

$$= \sqrt{54} \times \sqrt{100}$$

$$= 7.35 \times 10 = 73.5$$

Ex. Estimate $\sqrt{5.4}$

$$= \sqrt{540} \times \sqrt{0.01}$$

$$= 23.24 \times 0.1 = 2.324$$

Given $\sqrt[3]{24} \approx 2.88$, $\sqrt[3]{240} \approx 6.21$ and $\sqrt[3]{2400} \approx 13.39$, determine the value of the following cube roots.

Ex. Estimate
$$\sqrt[3]{0.024}$$

$$=\sqrt[3]{24} \times \sqrt[3]{0.001}$$

$$= 2.88 \times 0.1 = 0.288$$

Ex. Estimate
$$\sqrt[3]{240000}$$

$$=\sqrt[3]{240} \times \sqrt[3]{1000}$$

$$= 6.21 \times 10 = 62.1$$

Ex. Estimate
$$\sqrt[3]{2.4}$$

$$=\sqrt[3]{2400} \times \sqrt[3]{0.001}$$

$$= 13.39 \times 0.1 = 1.339$$

1.4 Homework

1-5 bcf..., 6 ace..., 7 bcf..., 8 ac

1.5 Exponential Notation

Recall:
$$5^3$$
 is the same as $5 \times 5 \times 5$

$$(4x)^2$$
 is the same as $4x \cdot 4x$

$$(-2y)^3$$
 is the same as $(-2y)(-2y)(-2y)$

$$12x^2y^3$$
 is the same as $12(x)(x)(y)(y)(y)$

One and Zero Exponent

Any number to the power of 0 is equal to 1, and any number to the power of 1 equals itself.

$$(12)^1 = 12$$
 $(12)^0 = 1$ $-(12)^0 = -1$ $(3\pi)^1 = 3\pi$ $(-3\pi)^0 = 1$ $-(3\pi)^0 = -1$

Exponent Laws

The Product Rule: $b^m \times b^n = b^{m+n}$

Ex. Simplify
$$x^4 \cdot x^5$$

$$= x^{4+5}$$

$$= x^{9}$$

Ex. Simplify $2^{2x} \times 2^{3x}$

$$= 2^{2x+3x}$$

$$=2^{5x}$$

Ex. Simplify
$$8(2^{2x})(2^3)$$

$$=2^3(2^{2x})(2^3)$$

$$=2^{3+2x+3}$$

$$=2^{2x+6}$$

The Quotient Rule:
$$\frac{b^m}{b^n} = b^{m-n}$$
 $b^m \div b^n = b^{m-n}$

Ex. Simplify
$$\frac{x^7}{x^4}$$

$$= x^{7-4}$$

$$= x^3$$

Ex. Simplify
$$\frac{x^6y^8}{x^4y}$$

$$= x^{6-4}y^{8-1}$$

$$= x^2 y^7$$

Ex. Simplify
$$\frac{x^5yz^3}{x^2y^3z^3}$$

$$= x^3 y^{-2} z^0$$

$$=\frac{x^3}{v^2}$$

The Power Rule: $(b^m)^n = b^{mn}$

Ex. Simplify
$$(x^5)^4$$

$$= x^{4.5}$$

$$= x^{20}$$

Ex. Simplify
$$[(g^2)^3]^6$$

$$=(g^2)^{18}$$

$$= g^{36}$$

Ex. Simplify
$$2^{2x}(16^{3x})$$

$$=2^{2x}[(2^4)^{3x}]$$

$$=2^{2x}[2^{12x}]$$

$$= 2^{14x}$$

Ex. Simplify
$$81^{6x} \div 27^{5x}$$

$$=(3^4)^{6x}\div(3^3)^{5x}$$

$$=3^{24x} \div 3^{15x}$$

$$= 3^{9x}$$

Raising a Product to a Power: $(a^x b^y)^n = a^{nx} b^{ny}$

Ex. Simplify $(5^2x^3)^2$

$$=5^{2\times2}x^{3\times2}$$

$$=5^4x^6$$
 or $=625x^6$

Ex. Simplify $(2x^3y^2)^4$

$$=2^{1\times 4}x^{3\times 4}y^{2\times 4}$$

$$=16x^{12}y^8$$

Ex. Simplify $(-6a^3b)^2$

$$= (-6)^2 a^{3 \times 2} b^{1 \times 2}$$

$$= 36a^6b^2$$

Ex. Simplify $\left(\frac{2x}{3y}\right)^2$

$$=\frac{2^2x^2}{3^2y^2}$$

$$=\frac{4x^2}{9y^2}$$

Negative Exponents
$$b^{-m} = \frac{1}{b^m}$$
 $\left(\frac{b^m}{a^n}\right)^{-1} = \frac{a^n}{b^m}$ $\left(\frac{b^m}{a^n}\right)^{-x} = \left(\frac{a^n}{b^m}\right)^x$

Ex. Simplify
$$5^{-3}$$

$$=\frac{1}{5^3}$$

$$=\frac{1}{125}$$

Ex. Simplify
$$\left(\frac{2x^3}{3y^2}\right)^{-2}$$

$$= \left(\frac{3y^2}{2x^3}\right)^2$$

$$=\frac{2^{-2}x^{-6}}{3^{-2}y^{-4}}$$

$$=\frac{3^2y^{2\times 2}}{2^2x^{3\times 2}}$$

$$=\frac{3^2y^4}{2^2x^6}$$

$$=\frac{9y^4}{4x^6}$$

$$=\frac{9y^4}{4x^6}$$

Note: do not leave final answer with negative exponents

$$3x^2y^{-3} \quad \Rightarrow \quad \frac{3x^2}{y^3}$$

$$\frac{25a}{16b^{-3}} \longrightarrow \frac{25ab^3}{16}$$

Rational Exponents: $b^{\frac{1}{n}}$

$$b^{\frac{1}{n}} = \sqrt[n]{b}$$

n is a positive integer

Ex. Write $x^{\frac{1}{2}}$ as a radical

$$=\sqrt{x}$$

$$=\sqrt{x}$$
 or $=\sqrt[2]{x}$

Ex. Write $\sqrt[4]{6}$ as an exponential

$$=6^{\frac{1}{4}}$$

Multiplying Radicals with Different Index Numbers

Ex. Simplify $\sqrt{2} \times \sqrt[4]{2}$

Cannot multiply two radicals with different index numbers; convert to exponential form and then simplify. Leave answer as a radical.

$$=$$
 $\frac{1}{2}$ \times $2^{\frac{1}{4}}$

$$\sqrt{2} = \sqrt[2]{2^1}$$

$$=2^{\frac{1}{2}+\frac{1}{4}}$$

$$=2^{\frac{3}{4}}$$

$$=\sqrt[4]{2^3}$$
 or $\sqrt[4]{8}$

Ex. Simplify $\sqrt[3]{3} \times \sqrt{3}$

$$=3^{\frac{1}{3}} \times 3^{\frac{1}{2}}$$

$$=3^{\frac{1}{3}+\frac{1}{2}}$$

$$=3\frac{5}{6}$$

$$=\sqrt[6]{3^5}$$

$$=\sqrt[6]{243}$$

Rational Exponents: $a^{\frac{m}{n}}$

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

or

$$\left(\sqrt[n]{a}\right)^m$$

Ex. Simplify $8^{\frac{4}{3}}$

$$=\sqrt[3]{8^4}$$

or

$$=\left(\sqrt[3]{8}\right)^4$$

$$=\sqrt[3]{4096}=16$$

$$=(2)^4=16$$

Ex. Simplify $4^{\frac{3}{2}}$

$$=\left(\sqrt{4}\right)^3$$

or

$$=(2^2)^{\frac{3}{2}}$$

$$=(2)^3=8$$

$$= 2^3 = 8$$

Ex. Simplify $\sqrt[3]{9} \times \sqrt{27}$

$$=\sqrt[3]{3^2} \times \sqrt{3^3}$$

$$=3^{\frac{2}{3}}\times3^{\frac{3}{2}}$$

$$=3\frac{2}{3}+\frac{3}{2}$$

$$=3^{\frac{13}{6}}$$

$$=\sqrt[6]{3^{13}}$$

or

$$=9\sqrt[6]{3}$$

Ex. Simplify
$$\frac{\sqrt[3]{4}}{\sqrt[4]{2}}$$

$$= \frac{\sqrt[3]{2^2}}{\sqrt[4]{2^1}}$$

$$=\frac{2^{\frac{2}{3}}}{\frac{1}{2^{\frac{1}{4}}}}$$

$$=2^{5/12}$$

$$=\sqrt[12]{2^5}$$

$$=\sqrt[12]{32}$$

Ex. Simplify $\sqrt[4]{25}$

$$=\sqrt[4]{5^2}$$

$$=5^{\frac{2}{4}}$$

$$=5^{\frac{1}{2}}$$

$$=\sqrt{5}$$

1.5 Homework

#1-11 bcf...

1.6 Irrational Numbers

Rational Numbers

A number that can be written in the form of $\frac{a}{b}$ where a and b are integers and $b \neq 0$

-> integers, terminating decimals, non-terminating repeating decimals

Examples of rational numbers: $5 = \frac{5}{1}$ $0.3 = \frac{3}{10}$ $0.333 \dots = \frac{1}{3}$

$$5 = \frac{5}{1}$$

$$0.3 = \frac{3}{10}$$

$$0.333 \dots = \frac{1}{3}$$

Irrational Numbers

Real numbers that **cannot** be written as a fraction $\frac{a}{b}$ where $a, b \in \mathbb{Z}$ -> non-terminating, non-repeating decimals

Examples of irrational numbers: $\sqrt{12}$ π

 $10\sqrt{3}$

Instead of approximating radicals, we can simplify them and keep the exact value of the radical.

 $\sqrt[n]{\chi}$ Radical:

n - the **Index Number**, indicates the root of the radical

x - the **Radicand**, the number or expression inside the radical

Radicals can be written as a Mixed Radical or an Entire Radical

Mixed radical examples: $2\sqrt{6}$, $-5\sqrt{2}$,

Entire radical example: $\sqrt{24}$, $-\sqrt{50}$, $\sqrt{504}$

Converting Mixed Radical to an Entire Radical

Ex. Write $-5\sqrt{6}$ as an entire radical.

$$= -\sqrt{5^2} \cdot \sqrt{6}$$

$$=-\sqrt{25}\cdot\sqrt{6}$$

$$=-\sqrt{150}$$

Ex. Write $3\sqrt[3]{4}$ as an entire radical.

$$=\sqrt[3]{3^3}\cdot\sqrt[3]{4}$$

$$= \sqrt[3]{27} \cdot \sqrt[3]{4}$$

$$=\sqrt[3]{108}$$

Ex. Write $3x^2y\sqrt{5xy}$ as an entire radical.

$$= \sqrt{(3x^2y)^2} \cdot \sqrt{5xy}$$

$$= \sqrt{9x^4y^2} \cdot \sqrt{5xy}$$

$$=\sqrt{45x^5y^3}$$

Simplifying Radicals

When a radical is in simplest form:

- the radicand has no perfect square factors other than 1
- the radicand does not contain a fraction
- no radical appears in the denominator

Ex. Simplify $\sqrt{56}$

Method 1: using prime factorization

$$56 = 2 \times 2 \times 2 \times 7$$

Because the index is 2, we group by pairs

All **pairs** of numbers come out of the radical, while the non-paired stays inside the radicand

$$\sqrt{56} = \frac{2}{\sqrt{2 \times 7}}$$

$$=2\sqrt{14}$$

Method 2: factor the largest perfect square from the radicand

$$\sqrt{56} = \sqrt{4} \times \sqrt{14}$$

$$= 2\sqrt{14}$$

Ex. Simplify
$$5\sqrt{216}$$

Method 1:

$$5\sqrt{216}$$

$$= 5 \times 2 \times 3\sqrt{2 \times 3}$$

$$=30\sqrt{6}$$

Method 2:

$$5\sqrt{216}$$

$$=5\cdot\sqrt{36}\cdot\sqrt{6}$$

$$= 5 \cdot 6 \cdot \sqrt{6}$$

$$=30\sqrt{6}$$

Radical Properties

Ex. Simplify
$$\sqrt{3} \times \sqrt{2}$$

$$=\sqrt{3\times2}$$

$$=\sqrt{6}$$

Ex. Simplify
$$\sqrt{5} \times \sqrt{7} \times \sqrt{3}$$

$$= \sqrt{5 \times 7 \times 3}$$

$$=\sqrt{105}$$

Ex. Simplify
$$\sqrt{15} \times \sqrt{12}$$

$$=\sqrt{180}$$

$$= \sqrt{36} \cdot \sqrt{5}$$

$$= 6\sqrt{5}$$

Ex. Simplify
$$\sqrt[3]{4} \times \sqrt[3]{15}$$

$$= \sqrt[3]{4 \times 15}$$

$$=\sqrt[3]{60}$$

Ex. Simplify
$$\sqrt[3]{14} \times \sqrt[3]{20}$$

$$=\sqrt[3]{280}$$

$$=\sqrt[3]{8}\cdot\sqrt[3]{35}$$

$$=2\sqrt[3]{35}$$

Extend the Multiplication Rule:
$$a\sqrt{x}(b\sqrt{y}) = ab\sqrt{xy}$$

The coefficients are multiplied together, while the radicands are multiplied together

Ex. Simplify
$$2\sqrt{15} \times 3\sqrt{6}$$

$$=6\sqrt{90}$$

$$=6\sqrt{9}\times\sqrt{10}$$

$$=6\times3\sqrt{10}$$

$$= 18\sqrt{10}$$

Ex. Simplify
$$\sqrt{3} \times \sqrt[3]{2}$$

$$=3^{\frac{1}{2}}\times2^{\frac{1}{3}}$$

$$=3^{\frac{3}{6}}\times2^{\frac{2}{6}}$$

$$=\sqrt[6]{3^3} \times \sqrt[6]{2^2}$$

$$=\sqrt[6]{27}\sqrt[6]{4}$$

$$=\sqrt[6]{108}$$

Division
$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

where $a \ge 0$ and b > 0

Ex. Simplify $\sqrt{75} \div \sqrt{25}$

$$=\sqrt{\frac{75}{25}}$$

$$=\sqrt{3}$$

Ex. Simplify $\frac{\sqrt[3]{96}}{\sqrt[3]{6}}$

$$=\sqrt[3]{\frac{96}{6}}$$

$$=\sqrt[3]{16}$$

$$= \sqrt[3]{8} \cdot \sqrt[3]{2}$$

$$=2\sqrt[3]{2}$$

1.6 Homework

1-10 (bcf...), 12, 13, 16, 17, 20

M. Kwan

Radicals with Fractions in the Radicand or Radical in the Denominator

Ex. Simplify
$$\frac{\sqrt{18}}{2\sqrt{6}}$$

$$=\frac{\sqrt{3}}{2\sqrt{1}}$$

$$=\frac{\sqrt{3}}{2}$$

If a radical appears in the denominator, you need to go through the process of **Rationalizing the Denominator**

Ex. Simplify $\frac{9}{\sqrt{12}}$

$$=\frac{9}{2\sqrt{3}}$$

$$=\frac{9}{2\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}$$

$$=\frac{9\sqrt{3}}{2\cdot 3}$$

$$=\frac{9\sqrt{3}}{6}$$

$$=\frac{3\sqrt{3}}{2}$$

Ex. Simplify
$$\sqrt{\frac{3}{5}}$$

$$=\frac{\sqrt{3}}{\sqrt{5}}$$

$$=\frac{\sqrt{3}}{\sqrt{5}}\cdot\frac{\sqrt{5}}{\sqrt{5}}$$

$$=\frac{\sqrt{15}}{5}$$

Ex. Simplify
$$\frac{5}{\sqrt{3}}$$

$$=\frac{5}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}$$

$$=\frac{5\sqrt{3}}{3}$$

Ex. Simplify
$$\frac{4\sqrt{2}}{3\sqrt{5}}$$

$$=\frac{4\sqrt{2}}{3\sqrt{5}}\cdot\frac{\sqrt{5}}{\sqrt{5}}$$

$$=\frac{4\sqrt{10}}{3.5}$$

$$=\frac{4\sqrt{10}}{15}$$

Ex. Simplify
$$\frac{12\sqrt{75}}{8\sqrt{6}}$$

$$=\frac{3\sqrt{25}}{2\sqrt{2}}$$

$$=\frac{3\cdot5}{2\sqrt{2}}$$

$$=\frac{15}{2\sqrt{2}}\cdot\frac{\sqrt{2}}{\sqrt{2}}$$

$$=\frac{15\sqrt{2}}{4}$$

Ex. Simplify
$$\frac{1}{\sqrt[3]{2}}$$

Note:
$$\sqrt[3]{2} \cdot \sqrt[3]{2} = \sqrt[3]{2^2} \neq 2$$

instead
$$\sqrt[3]{2} \cdot \sqrt[3]{2^2} = \sqrt[3]{2^3} = 2$$

$$= \frac{1}{\sqrt[3]{2}} \cdot \frac{\sqrt[3]{2^2}}{\sqrt[3]{2^2}}$$

$$=\frac{\sqrt[3]{4}}{2}$$

Homework:

Simplifying Radicals Worksheet #1-55

Review Assignment