Chapter 2 - Limits and Continuity

2.1 Limits

Limits are used to describe the behaviour of a function as it approaches a specific value; how it behaves near at a point, instead of at the point.

Limit Notation:

Left-side limit:

Right-side limit:

Limit of f(x) as x approaches a:

Suppose that f(x) approaches a single number L, as x approaches a from both sides.

$$\lim_{x \to a} f(x) = L$$

The limit of f(x), as x approaches a, equals L.

The limit of a function f(x) exists at x = a if and only if both one-sided limits exist and have the same value of L.

So,

or else

Ex. Given
$$\lim_{x\to 2^-} f(x) = 3$$
 and $\lim_{x\to 2^+} f(x) = 3$, determine $\lim_{x\to 2} f(x)$.

The left-side limit and right-side limit are the same, so the limit must evaluate to be the same value.

Given $\lim_{x\to a^-} f(x) = 5$ and $\lim_{x\to a^-} f(x) = -3$, determine $\lim_{x\to a} f(x)$. Ex.

The limit does not exist when the left-side and right-side are not equal.

Use the graph to evaluate the following limits. Ex.

$$a. \lim_{x \to -2^-} f(x)$$

b.
$$\lim_{x \to -2^+} f(x)$$
 c. $\lim_{x \to -2} f(x)$ d. $f(-2)$

c.
$$\lim_{x \to -2} f(x)$$

d.
$$f(-2)$$

e.
$$\lim_{x \to -1^{-}} f(x)$$
 f. $\lim_{x \to -1^{+}} f(x)$ g. $\lim_{x \to -1} f(x)$ h. $f(-1)$

f.
$$\lim_{x \to -1^+} f(x)$$

g.
$$\lim_{x \to -1} f(x)$$

h.
$$f(-1)$$

i.
$$\lim_{x \to 2^-} f(x)$$

i.
$$\lim_{x \to 2^{-}} f(x)$$
 j. $\lim_{x \to 2^{+}} f(x)$

$$k. \lim_{x \to 2} f(x)$$

m.
$$\lim_{x\to 3^-} f(x)$$
 n. $\lim_{x\to 3^+} f(x)$ o. $\lim_{x\to 3} f(x)$

n.
$$\lim_{x \to 2^+} f(x)$$

o.
$$\lim_{x \to 3} f(x)$$

p.
$$f(3)$$

Ex. Use the graph of f to evaluate the following.

a.
$$\lim_{x \to -2^-} f(x) =$$

$$b. \qquad \lim_{x \to -2^+} f(x) =$$

c.
$$\lim_{x \to -2} f(x) =$$

d.
$$f(-2) =$$

$$e. \quad \lim_{x \to 0^-} f(x) =$$

$$f. \qquad \lim_{x \to 0^+} f(x) =$$

$$g. \qquad \lim_{x \to 0} f(x) =$$

h.
$$f(0) =$$

i.
$$\lim_{x \to 2^{-}} f(x) =$$

$$\lim_{x \to 2^+} f(x) =$$

$$k. \qquad \lim_{x \to 2} f(x) =$$

I.
$$f(2) =$$

$$m. \quad \lim_{x \to 4^-} f(x) =$$

$$n. \quad \lim_{x \to 4^+} f(x) =$$

o.
$$\lim_{x \to 4} f(x) =$$

p.
$$f(4) =$$

Properties of Limits

Assume $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ both exist and c is a constant.

$$1. \quad \left[\lim_{x \to a} cf(x)\right] =$$

$$2. \qquad \lim_{x \to a} [f(x) \pm g(x)] =$$

$$3. \quad \lim_{x \to a} [f(x)g(x)] =$$

4.
$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] =$$

$$5. \qquad \lim_{x \to a} [f(x)]^n =$$

$$6. \qquad \lim_{x \to a} \sqrt[n]{f(x)} =$$

Ex. Use the properties of limits to evaluate the following limit.

$$\lim_{x \to 2} \frac{2x^3 - x^2 + 4}{\sqrt{x + 2}}$$

Ex. Given $\lim_{x\to 2} f(x) = 3$, $\lim_{x\to 2} g(x) = 10$, and $\lim_{x\to 2} h(x) = -5$ use the limit properties to compute each of the following limits. If not possible, explain.

a.
$$\lim_{x \to 2} \left[\frac{f(x)}{g(x)} - \frac{h(x)}{f(x)} \right]$$

b.
$$\lim_{x\to 2} [f(x)g(x)h(x)]$$

c.
$$\lim_{x \to 2} \left[\frac{1}{h(x)} + \frac{2 - f(x)}{g(x) + h(x)} \right]$$

d.
$$\lim_{x \to 2} \left[2f(x) - \frac{1}{g(x) + 2h(x)} \right]$$

Evaluating Limits Using Table of Values and Graphs

Ex. Given
$$f(x)=\left\{ egin{array}{c} \frac{2x-2}{x^2-1} \ , & x
eq 1 \ 3 \ , & x=1 \end{array}
ight.$$
 , find the value of $\lim_{x o 1} f(x)$.

Table of Values:

	lim f(n) 1					$\lim_{x \to \infty} f(x) = 1$					
y	1.0526	1.00503	1.00050	1.00005	3	0.99995	0.99950	0.99502	0.95238		
x	0.9	0.99	0.999	0.9999	1	1.0001	1.001	1.01	1.1		

(Right-hand limit)

Graphically:

Ex. Given
$$f(x) = \left\{ \begin{array}{ll} 2-x \ , & x \leq 2 \\ x & , & x > 2 \end{array} \right.$$
 , find the value of $\lim_{x \to 2} f(x)$.

Table of Values:

x	1.9	1.99	1.999	1.9999	2	2.0001	2.001	2.01	2.1
y	0.1	0.01	0.001	0.0001	0	2.0001	2.001	2.01	2.1

$$\lim_{x\to 2^-} f(x) = 0$$

$$\lim_{x\to 2^+} f(x) = 2$$
 (Left-hand limit) (Right-hand limit)

Graphically:

Evaluating Limits Algebraically

There are multiple techniques to try and use when evaluating limits; the most straight-forward method is direct substitution.

Evaluating limits using Direct Substitution Property

If f(x) is a polynomial or rational function and a is in the domain of f(x):

$$\lim_{x \to a} f(x) =$$
 substitute in a into $f(x)$ and evaluate

Ex. Find the following limits.

a.
$$\lim_{x \to 2} (3x^2 + x - 2)$$

b.
$$\lim_{x \to 0} \frac{6x^2 + 2x - 7}{x + 3}$$

If using Direct Substitution Property results in an indeterminate solution $\frac{0}{0}$, try using other methods.

Limits With Rational Expressions using Factoring

- 1. Factor the numerator and denominator
- 2. Cancel the common factor

Ex. Given
$$f(x) = \frac{x^2 - 4x + 3}{x - 3}$$
, find the value of $\lim_{x \to 3} f(x)$.

Evaluate the following limits.

a. $\lim_{x\to 1} \frac{x^2-x}{x-1}$ Ex.

a.
$$\lim_{x \to 1} \frac{x^2 - x}{x - 1}$$

b.
$$\lim_{x \to 3} \frac{x^2 - 9}{x^3 - 27}$$

c.
$$\lim_{x \to -5} \frac{x^3 + 125}{x + 5}$$

Ex. Given
$$f(x)=\left\{ egin{array}{c} \frac{2x-2}{x^2-1} \ , & x
eq 1 \ 3 \ , & x=1 \end{array}
ight.$$
 find the value of $\lim_{x o 1} f(x)$.

For this piece-wise function, the function is the same before and after x=1, so there is no need to evaluate both one-sided limits.

Limits With Radical Expressions using Conjugate Pairs

- 1. Multiply the numerator and denominator by the conjugate
- 2. Cancel the common factor
- Ex. Evaluate the following limits.

a.
$$\lim_{x \to 0} \frac{\sqrt{4+x}-2}{x}$$

b.
$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1}$$

Alternatively, we could factor...but how?

Limits With Complex Fractions using LCD

- Use lowest common denominator to combine fractions 1.
- 2. Cancel the common factor
- Evaluate the following limits. a. $\lim_{x \to 3} \frac{\frac{1}{3} \frac{1}{x}}{x 3}$ Ex.

b.
$$\lim_{x \to 0} \frac{\frac{1}{x+2} - \frac{1}{2}}{x}$$

Limits with Piece-wise Functions

Since the function can be different on either side of a value a, need to value both one-sided limits separately.

$$\lim_{x \to a} f(x) \qquad \text{where} \qquad f(x) = \begin{cases} g(x), x < a \\ h(x), x \ge a \end{cases}$$

Need to evaluate both $\lim_{x\to a^-} f(x)$ and $\lim_{x\to a^+} f(x)$.

Ex. Given
$$f(x) = \begin{cases} 6x, & x \le -4 \\ 1 - 9x, & x > -4 \end{cases}$$
. Evaluate the following.

a.
$$\lim_{x\to 7} f(x)$$

b.
$$\lim_{x \to -4} f(x)$$

Ex. Given
$$f(x) = \left\{ \begin{array}{ll} 2-x \ , & x \leq 2 \\ x & , & x > 2 \end{array} \right.$$
 , find the value of $\lim_{x \to 2} f(x)$.

Ex. Let
$$f(x) = \begin{cases} 3x^2 - 2x + 1 &, x < 1 \\ x^3 + 1 &, x \ge 1 \end{cases}$$
. Find $\lim_{x \to 1} f(x)$.

Limits with Absolute Value

Definition of Absolute Value (as a Piece-wise Function)

$$|x| = \begin{cases} -x & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$$

Evaluating limits with absolute value is very similar to evaluating limits with piece-wise function.

Ex. Evaluate the following limits.

a.
$$\lim_{t\to 2} \frac{2-t}{|t-2|}$$

b.
$$\lim_{x \to 4} \frac{|x-4|}{x^2-16}$$

Ex. Show that $\lim_{x\to 0} \frac{|x|}{x}$ does not exist.

Limits of Reciprocal Functions at 0

$$\lim_{x \to 0^-} \frac{1}{x} =$$

$$\lim_{x \to 0^+} \frac{1}{x} =$$

$$\lim_{x \to 0} \frac{1}{x} =$$

$$\lim_{x\to 0^-}\frac{1}{x^2} =$$

$$\lim_{x\to 0^+}\frac{1}{x^2} =$$

$$\lim_{x\to 0}\frac{1}{x^2} =$$

Ex. Evaluate the following limits.

a.
$$\lim_{x \to 1^-} \frac{4}{x-1}$$

b.
$$\lim_{x \to 1^+} \frac{4}{x-1}$$

$$c. \qquad \lim_{x \to 1} \frac{4}{x - 1}$$

$$d. \qquad \lim_{x \to -1^+} \frac{x}{x+1}$$

e.
$$\lim_{x \to 1^{-}} \frac{x-1}{|x-1|}$$

Greatest Integer Function (Floor Function) [x] or [x]

 $\lfloor x \rfloor$ or $\mathrm{int}(x)$ represents the greatest integer less than or equal to x $\lfloor x \rfloor = n$ if and only if $n \le x < n+1$ where $n \in \mathbb{Z}$

$$[3.9] = [2.1] = [-1.8] = [-5.1] =$$

Ex. Show that $\lim_{x\to 0} [x]$ does not exist

\boldsymbol{x}	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
у							

Ex. Sketch the graph of $y=\lfloor x\rfloor$ on the interval $-3 \le x < 3$ and show that $\lim_{x\to 0} \lfloor x\rfloor$ does not exist.

Ex. Sketch the graph of $y = \frac{1}{x}$ and show that $\lim_{x \to 0} \frac{1}{x}$ does not exist.

2.1 Homework:

Limits Worksheet

Stewart:

pg 96 # 2, 3, 5, 7, 9, 11, 23, 26, 29, 32, 33, 37, 38a

pg 106 # 1, 3, 11-32, 41-46,48-50, 58, 62, 63

2.2 Limits Involving Infinity

Limit of Rational Functions in the form $\frac{\infty}{\infty}$

When taking the limit of a **rational function** and both the numerator and denominator is equal to infinity:

Divide the both the numerator and denominator by highest power (degree) of \boldsymbol{x} in the denominator

Ex. Evaluate the following limits:

a.
$$\lim_{x \to \infty} \frac{3x+4}{6x^2+1}$$

b.
$$\lim_{x \to \infty} \frac{10x^2 + 7x - 9}{8x^2 + 11x - 2}$$

c.
$$\lim_{x \to \infty} \frac{2x^2 + 3x - 5}{7x - 10}$$

Horizontal Asymptote of Rational Functions

In previous math classes, you may have come across a method to determine horizontal asymptotes following the steps below:

For a rational function
$$f(x) = \frac{ax^m + \cdots}{bx^n + \cdots}$$
,

This method is effective for the most part; but most students cannot explain why it is true.

A better way to find horizontal asymptotes of rational functions can be done using limits! Horizontal asymptotes are pseudo-asymptotes; they can be crossed and are used to predict the end behaviour of a function.

Using Limits to Determine Horizontal Asymptotes

Horizontal asymptotes can be determined by evaluating the limit of a rational function f(x) as x goes to $-\infty$ or ∞ .

Typically, you need only evaluate $x \to \infty$ or $x \to -\infty$, unless your f(x) involves absolute values or is a piece-wise function.

Ex. Find the horizontal asymptote of the rational function $f(x) = \frac{2x^2+1}{x^2+x+1}$. Use limits to justify your answer.

Ex. Find the horizontal asymptote of the rational function $f(x) = \frac{5x+11}{3x^2+7}$. Use limits to justify your answer.

Horizontal Asymptote (In general)

If the line y = L is a horizontal asymptote of the graph of y = f(x), then

$$\lim_{x \to -\infty} y = L$$

or

$$\lim_{x \to \infty} y = L$$

Find the equation of the horizontal asymptote for each curve. Use limits to Ex. justify your answers.

b.

c.

d.

Vertical Asymptote

If the line x=a is a vertical asymptote of the graph of y=f(x), then

Ex. Find the equation of the vertical asymptote for each curve. Use limits to justify your answers.

a.

b.

c.

d.

Horizontal Asymptotes Involving Roots/Absolute Value

$$\sqrt{x^2} = |x|$$

$$|x| = \begin{cases} -x, & x < 0 \\ x, & x \ge 0 \end{cases}$$

Ex. Find the equation(s) of the horizontal asymptote(s) of $y = \frac{2x}{\sqrt{x^2+1}}$.

Graphically:

Ex. Find the equation(s) of the horizontal asymptote(s) of $y = \frac{x-4x^2}{\sqrt{7x^4+x^2}}$.

2.2 Homework:

Limits Involving Infinity Worksheet Stewart: pg 140 # 3, 5, 7, 14-29, 31, 32, 41-45

2.3 Continuity

Three-part Definition of Continuity

A function f is **continuous** at x = a if:

All 3 conditions must be met for a function f to be continuous at x=a.

Ex. Explain why the graph of f is discontinuous at x=-2,0,3,4

At
$$x = -2$$
,

At
$$x = 0$$
,

At
$$x = 3$$
,

At
$$x = 4$$
,

- Ex. For the function $f(x) = \frac{x+1}{x^2-x-2}$, answer the following questions.
 - a. Simplify the equation if possible and sketch the graph of f(x)

- b. Determine all values of x where f is discontinuous.
- c. Find the limit of f at each of the discontinuous points.

Ex. Identify where the function is discontinuous and the type of discontinuity. f(x) = [x] (the greatest integer function)

Ex. Let
$$f$$
 be defined by $f(x) = \begin{cases} x^2 + 2x + 3 \ , x < 0 \\ \sqrt{x+1} + 2 \ , x \ge 0 \end{cases}$. Use the **three-part definition of continuity** to prove f is continuous at $x = 0$.

a.
$$f(0) = \sqrt{0+1} + 2$$

b. Left-side limit

c. Since
$$\lim_{x\to 0} f(x) = f(0) = 3$$

Functions with Continuous Domain

The following types of functions are continuous in every number in their domains:

Polynomials Functions
Trigonometric Functions
Exponential Functions
Radical functions

Rational functions
Inverse Trigonometric Functions
Logarithmic Functions

Where is the function $f(x) = \frac{\ln x + \tan^{-1} x}{x^2 - 1}$ continuous? Ex.

Ex.

Find the value of
$$k$$
 that makes $f(x)$ continuous everywhere.
$$f(x) = \begin{cases} \frac{x^2-9}{x+3} \ , x \neq -3 \\ k \ , x = -3 \end{cases}$$

Ex.
$$f(x) = \begin{cases} k^3 + x, x < 3 \\ \frac{16}{k^2 - x}, x \ge 3 \end{cases}$$

Let f be the function defined above, where k is a positive constant. For what value of k, if any, is f continuous?

2.3 Homework:

Continuity Worksheet Stewart:

pg 127 # 3, 4, 12, 14, 16-22, 35, 39, 42, 45, 46

2.4 Average Rate of Change and Instantaneous Rate of Change

The Average Rate of Change of f with respect to x over $a \le x \le b$

Ex. Find the average rate of change for $f(x) = x^2 + 1$, with respect to x over the interval [-1,2].

The instantaneous Rate of Change of f with respect to x at x=a.

The instantaneous rate of change at x = a for f(x) is given by:

The **tangent line** is the line that touches a curve at just one point (**tangent point**). The tangent line is the line that passes through two infinitely close points on a curve.

As point B approaches point A,

Finding the Slope Using $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$

Ex. Find the equation of the tangent line to the curve $f(x) = x^2 + 1$ at (2,5).

Ex. Find the equation of the tangent line to the curve $f(x) = 2\sqrt{x}$ at (4,4).

Finding the Slope Using $f'(a) = \lim_{h o 0} rac{f(a+h) - f(a)}{h}$

Ex. Find the equation of the tangent line to the curve $f(x) = x^2 + 1$ at (2,5).

Ex. Find the equation of the tangent line to the curve $f(x) = 2\sqrt{x}$ at (4,4).

Ex. Find the slopes of the tangent line to the graph of the function $f(x) = \sqrt{x}$ at the points (1,1), (4,2), and (9,3).

Velocity Example

Velocity is the rate that displacement changes over time:

Displacement at t seconds:

$$v_1 = 0$$
, $a = 9.8$:

Function Notation:

- Ex. Suppose a ball is dropped from a cliff that is 500 m above ground level.
 - a. Determine the velocity of the ball after 6 seconds.

b. Determine the velocity when the ball hits the ground. Cliff is 500 m high, so when the ball hits the ground, d=500 First, determine the time it takes to hit the ground.

2.4 Homework:

Avg and Instantaneous Rate of Change Worksheet Stewart:

pg 150 # 5-8, 10, 13, 16, 18, 20, 25, 27-32, 33, 34, 38-40, 46, 53* fun:)

2.5 Squeeze Theorem

Squeeze Theorem

Ex. Prove that
$$\lim_{x\to 0} x^2 \cos\left(\frac{1}{x}\right) = 0$$

Ex. Given
$$\frac{1}{x^2+1} \le f(x) \le 1$$
 for all x , find $\lim_{x\to 0} f(x)$

Ex. Prove that
$$\lim_{x \to 0} x^4 \sin^2 \left(\frac{1}{x}\right) = 0$$

2.5 Homework:

Squeeze Theorem Worksheet Stewart: Pg 107 # 36-40 Pg 142 # 57

2.6 Limits of Trigonometric Functions

Limits of Trigonometric Functions at asymptotes

For
$$y = \tan x$$
, asymptotes at $x = \frac{\pi}{2} + \pi n$, $n \in \mathbb{Z}$

For $y = \cot x$, asymptotes at $x = \pi n, n \in \mathbb{Z}$

For
$$y = \sec x$$
, asymptotes at $x = \frac{\pi}{2} + \pi n$, $n \in \mathbb{Z}$

For $y = \csc x$, asymptotes at $x = \pi n$, $n \in \mathbb{Z}$

Limits of Trigonometric Functions

The graph of
$$y = \frac{\tan x}{x}$$

The graph of
$$y = \frac{1 - \cos x}{x}$$

Ex. Evaluate the following limits.

a.
$$\lim_{x \to 0} \frac{\sin 3x}{3x}$$

b.
$$\lim_{x \to 0} \frac{\tan 2x}{2x}$$

c.
$$\lim_{x \to 0} \frac{\tan(\sin x)}{\sin x}$$

d.
$$\lim_{x \to \infty} x \sin\left(\frac{1}{x}\right)$$

e.
$$\lim_{x \to 0} \frac{\sin x}{3x}$$

f.
$$\lim_{x \to 0} \frac{\tan 2x}{\frac{2}{3}x}$$

g.
$$\lim_{t\to 0} \frac{\sin 5t}{t}$$

h.
$$\lim_{\theta \to 0} \frac{\tan 2\theta}{3\theta}$$

i.
$$\lim_{x \to 0} \frac{\sin 5x}{\tan 2x}$$

j.
$$\lim_{x \to 0} \frac{\sin(\tan x)}{2x}$$

2.6 Homework:

Limits of Trigonometric Functions Worksheet Stewart: pg 96 # 12, 34, 35

2.7 Limits of Exponential and Logarithmic Functions

$$y = e^x$$

$$y = \ln x$$

Ex. Evaluate the following limits.

a.
$$\lim_{x\to\infty} 3^x$$

b.
$$\lim_{x \to \infty} 3^{-x}$$

c.
$$\lim_{x \to \left(\frac{\pi}{2}\right)^{-}} \left(\frac{1}{3}\right)^{\tan x}$$

Definition of Euler's Number, e

Ex. Evaluate the following limits.

a.
$$\lim_{x \to \pm \infty} \left(1 + \frac{2}{x} \right)^{\frac{x}{2}} = \lim_{x \to \pm \infty} \left(1 + \frac{5}{x} \right)^{\frac{x}{5}} = \lim_{x \to \pm \infty} \left(1 - \frac{3}{2x} \right)^{-\frac{2x}{3}}$$

b.
$$\lim_{x \to 0} (1 + 2x)^{\frac{1}{2x}} = \lim_{x \to 0} \left(1 + \frac{x}{3} \right)^{\frac{3}{x}} = \lim_{x \to 0} \left(1 - \frac{x}{3} \right)^{-\frac{3}{x}}$$

c.
$$\lim_{x \to \infty} \left(1 + \frac{4}{x} \right)^x$$

d.
$$\lim_{x \to \infty} \left(1 - \frac{3}{x}\right)^x$$

2.7 Homework:

Limits of Exponential and Logarithmic Functions Worksheet

2.8 Intermediate Value Theorem (IVT)

Ex. Show that the equation $x^3 - 2x - 2 = 0$ has a solution on the interval [1, 2].

Ex.	Show that there is a solution of $\sqrt[3]{x} + x = 1$ in the interval [0, 8].
	lomework:
Stew	mediate Value Theorem (IVT) Worksheet #All art:

pg 129 # 51-54