

Chapter 9 - Combinatorics

9.1 Combinatorics

Combinatorics is the branch of mathematics that is primarily concerned with counting.

Fundamental Counting Principle (The Multiplication Principle)

- If we can perform a first task in a different ways
- If we can perform a second task in b different ways
- If we can perform a third task in c different ways, and so on...

Then the first task followed by the second and so on can be performed in

$$a \cdot b \cdot c \dots \text{different ways}$$

These tasks do not affect each other; they are called **independent events**.

Examples Using the Multiplication Principle

Ex. A man has 2 shirts (red and yellow), 3 pairs of pants (black, white, and navy), and 2 pairs of shoes (green and orange). How many different outfits can he wear?

There are 2 choices of shirts. For each choice of shirts, there are 3 choices of pants. So, there are 2×3 possible combinations for shirts and pants. For each combination of shirts and pants, there are 2 choices of shoes.

Therefore, the possible number of outfits is $2 \times 3 \times 2 = 12$

Shirts	Pants	Shoes			
<input type="text"/>	<input type="text"/>	<input type="text"/>			
2	•	3	•	2	= <u>12 ways</u>

Ex. A particular automobile has 4 different models, 3 sizes of motors and 6 colour schemes. How many different ways can an automobile be ordered?

Models	Motors	Colours				
4	×	3	×	6	=	72

There are 72 different ways

Ex. The first 4 questions on a quiz are true-false questions, while the next 6 questions are multiple choice with possible answers a, b, c, d, and e. How many different possible answer sequences are there for these 10 questions?

T/F: $2 \times 2 \times 2 \times 2 = 2^4 = 16$

M/C: $5 \times 5 \times 5 \times 5 \times 5 \times 5 = 5^6 = 15625$

Total $= T/F \times M/C$

$$= 16 \times 15625$$

$$= 250000$$

250,000 possible sequences

Ex. How many telephone numbers are available with the 778 prefix?

After the 778 prefix, each of the 7 numbers have 10 possibilities, assuming no restrictions.

7	7	8	-	—	—	—	—	—	—	—	
				#1	#2	#3	#4	#5	#6	#7	
				10	\times	10	\times	10	\times	10	\times

$$10^7 = 10,000,000 \text{ possible phone numbers}$$

Ex. How many different ways can 5 different books be arranged on a shelf?

The first book would have 5 choices. With 4 books left, the second choice would have 4 choices. Then the third book would have 3 choices, while the fourth and fifth books would have 2 and 1 choices respectively.

$$5 \times 4 \times 3 \times 2 \times 1 = 120 \text{ different ways}$$

Ex. How many different ways can 3 books be arranged on a shelf, using 5 different books?

$$5 \times 4 \times 3 = 60 \text{ different ways}$$

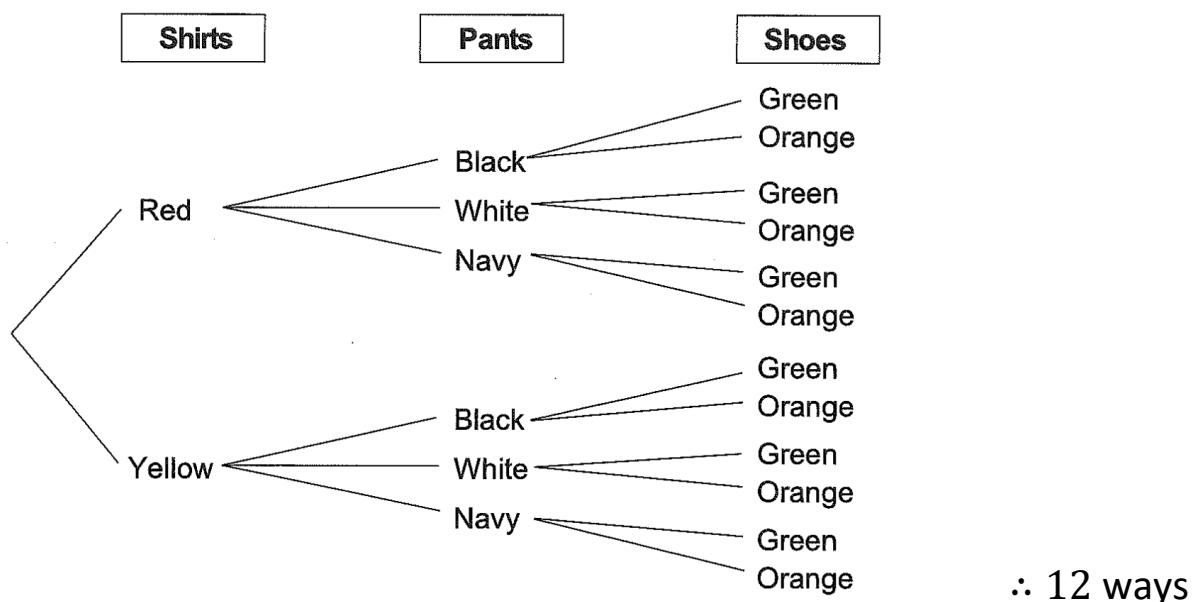
Tree Diagrams

We use tree diagrams to have a systematic way of counting the outcomes.

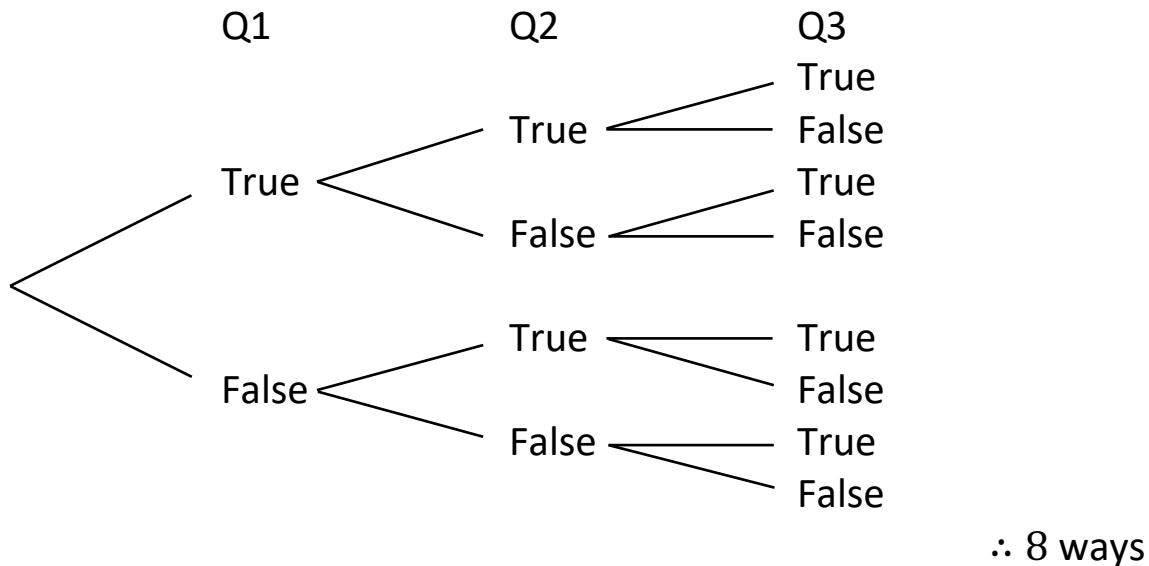
Examples Using Tree Diagrams

Ex. A man has 2 shirts (red and yellow), 3 pairs of pants (black, white, and navy), and 2 pairs of shoes (green and orange). How many different outfits can he wear?

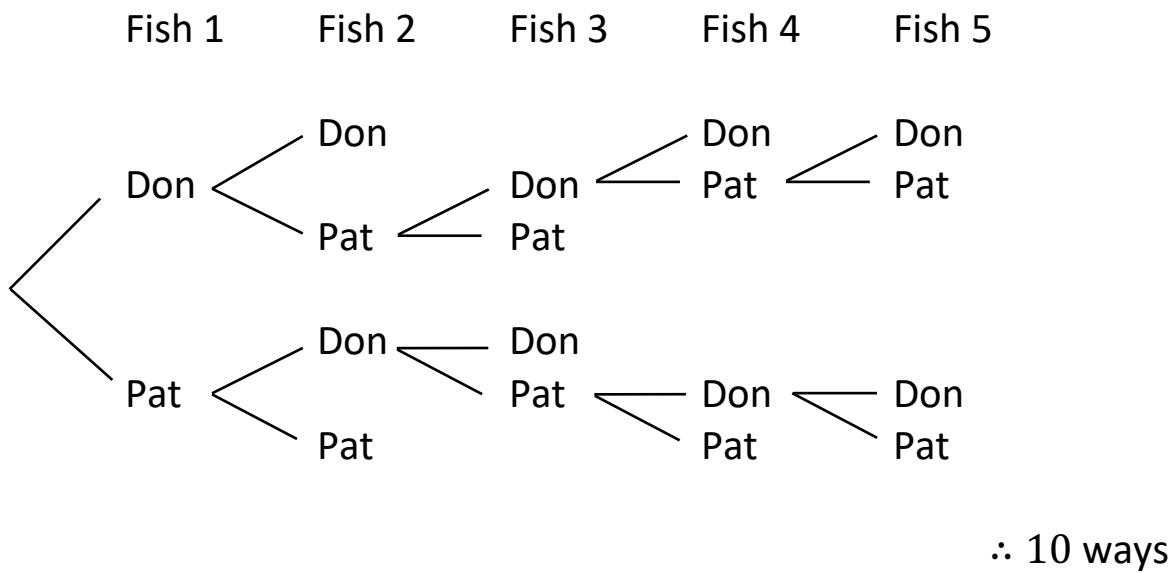
List out possible outcomes using a tree diagram



Ex. How many ways can a 3 item true-false test be answered?



Ex. Don and Pat are in a fishing tournament. The first person to catch 2 fish in a row or 3 fish in total wins the tournament. How many different outcomes are possible?



Outcomes:

DD, PP, DPP, PDD, DPDD, PDPP, DPDPD, DPDPP, PDPDD, PDPDP

Factorial Notation!

The product of the consecutive positive integers from 1 to n is given a special name, n factorial, which is written $n!$ $(n \geq 0)$

$$0! = 1 \quad \text{by definition}$$

$$1! = 1$$

$$2! = 2 \times 1 = 2$$

$$3! = 3 \times 2 \times 1 = 6$$

$$4! = 4 \times 3 \times 2 \times 1 = 24$$

⋮

$$n! = n(n - 1)(n - 2) \dots 3 \cdot 2 \cdot 1$$

Ex. Evaluate 5!

$$5!$$

$$= 5 \times 4 \times 3 \times 2 \times 1$$

$$= 120$$

Ex. How many different “words” can be made using all the letters in abcde?

This is the exact same situation as the problem with arranging 5 books. First book has 5 choices, second book as 4 choices, and etc.

$$5! = 120$$

There are 120 “words” that can be constructed from abcde

Ex. A three-digit password is made from using numbers 0-9.

a. How many possible passwords are there if there are no restrictions

$$10 \cdot 10 \cdot 10 \cdot 10$$

$$= 10000$$

b. How many possible passwords are there if none of the numbers be repeated?

$$10 \cdot 9 \cdot 8 \cdot 7$$

$$= 5040$$

c. How many possible passwords are there if a number can be used up to 3 times?

$$10 \cdot 10 \cdot 10 \cdot 10 - 10$$

$$= 9990$$

Ex. Simplify and the evaluate $\frac{86!}{84!}$

$$\frac{86!}{84!}$$

Re-write 86! as $86 \times 85 \times 84!$

$$= \frac{86 \times 85 \times 84!}{84!}$$

Cancel out 84! from the numerator and denominator

$$= 86 \times 85$$

$$= 7310$$

Ex. Simplify and then evaluate $\frac{20!-18!}{18!}$

$$\frac{20!-18!}{18!}$$

Factor out 18!

$$= \frac{18!(20 \times 19 - 1)}{18!}$$

Reduce 18! from numerator and denominator

$$= 20 \times 19 - 1$$

$$= 380 - 1$$

$$= 379$$

Ex. Simplify $\frac{(n+1)!}{(n-1)!}$

$$\frac{(n+1)!}{(n-1)!}$$

$$= \frac{(n+1)(n)(n-1)!}{(n-1)!}$$

Need to re-write the larger factorial so it has a common factor with the smaller factorial
 $(n+1)! = (n+1)(n)(n-1)!$

$$= (n+1)(n)$$

$$= n^2 + n$$

Ex. Simplify $\frac{n!}{(n-2)!+(n-3)!}$

$$= \frac{n(n-1)(n-2)(n-3)!}{(n-2)(n-3)!+(n-3)!}$$

$$= \frac{n(n-1)(n-2)}{(n-2)+1} = \frac{n(n-1)(n-2)}{n-1}$$

$$= n(n-2) = n^2 - 2n$$

Solving Factorial Equations

Ex. Solve $\frac{n!}{(n-2)!} = 3!$

$$\frac{n(n-1)(n-2)!}{(n-2)!} = 6$$

$$n(n-1) = 6$$

$$n^2 - n - 6 = 0$$

$$(n+2)(n-3) = 0$$

$$n = -2, 3 \quad \text{reject } -2$$

$$n = 3$$

Ex. Solve $3! (n+1)! = 5! (n-1)!$

$$6(n+1)(n)(n-1)! = 120(n-1)!$$

$$(n+1)(n) = 20 \quad \text{able to cancel out } (n-1)!, \text{ because it } = 1$$

$$n^2 + n - 20 = 0$$

$$(n+5)(n-4) = 0$$

$$n = -5, 4 \quad \text{reject } -5$$

$$n = 4$$

9.1 Homework

7.1 pg 451 # 2, 3, 5, 8, 9, 12, 16, 17bd, 18bcf, 19

9.2 Permutations, $n P r$

A permutation is the fundamental counting principle put into a formula.

Permutations (Rule A)

Permutations (Rule A) must follow the following three restrictions:

1. The n objects are all different
2. No object can be repeated
3. Order makes a difference (ex. xy is different from yx)

A permutation is the arrangement of r objects with ($r \leq n$) can be written as $P(n, r) = nPr$

$$n P r = \frac{n!}{(n - r)!}$$

Note: Combinations and Permutations are similar but have a distinctive difference.

Permutations – order matters

Combinations – order does not matter

For example, **permutation** considers 538-2783 as being **different** from 583-2783, while **combinations** recognize the two as the **same**.

Another example, consider three people, Chris, Daryl, and Emma.

In a three-person committee, **combinations** considers these three people as one combination.

For a three-person executive committee with a president, vice-president, and treasurer, **permutations** would consider these people as ($3 P 3 = 3!$) 6 permutations.

Ex. How many different 3-digit numbers can be made using the numbers 1 through 7 by only using each number once?

7P3

$$= \frac{7!}{(7-3)!}$$

$$= \frac{7 \times 6 \times 5 \times 4!}{4!}$$

$$= 7 \times 6 \times 5 = 210$$

There are 210 permutations.

Ex. How many ways can a president, vice president and treasurer be selected from a class of 25 students?

25P3

$$= \frac{25!}{22!}$$

$$= 25 \times 24 \times 23$$

$$= 13800 \text{ ways}$$

Ex. 8 friends are going to watch a movie and want to sit together. In a row with 8 seats, how many ways can they pick their seats?

8 P 8

$$= 8!$$

$$= 40320$$

Ex. 8 friends are going to dinner and sit at an 8-person round table. How many ways can they sit together?

Because the table is round, the first person only has 1 choice (to sit in an open seat). The second person has 7 choices to sit relative to the first person. The third person has 6 choices relative to the first person...
7 P 7

$$= 7!$$

$$= 5040$$

Ex. 8 friends are going to watch a movie and want to sit together. One couple always have to sit together. In a row with 8 seats, how many ways can they pick their seats?

Treat the couple as one person, so it's like 7 people. But the couple have 2 sitting arrangements.

$$2 \text{ P } 2 \cdot 7 \text{ P } 7$$

$$= 2! \cdot 7!$$

$$= 10080$$

Ex. 8 friends are going to watch a movie and want to sit together. The couple from the previous question broke up and cannot sit together. In a row with 8 seats, how many ways can they pick their seats?

The total ways of 8 people sitting is $8! = 40320$

The total ways the couple sit together is $2! \cdot 7! = 10080$

The total ways the broke up couple avoid each other is the difference between the previous two sums = $40320 - 10080 = 30240$

Permutations (Rule B)

n objects where there are some objects that are the same

Comparing Permutations Rule A and B

Rule A: $abcd$

Rule B: $aabc$

Permutations (Rule B)

In the example above, $aabc$, we could consider the same objects to be different, so a_1a_2bc . So, the arrangement a_1a_2bc looks different from a_2a_1bc , but the two a 's indistinguishable. Thus, the two arrangements are considered the same.

In order to not count the repeats, we divide the total possible arrangements by the factorial of each repeat.

So, arrangements for $aabc$ would be $\frac{4!}{2!} = 12$

Ex. How many different 5-letter “words” can be formed from the letters “SWEET”?

E occurs twice, need to divide the possible outcomes by 2!

$$\frac{5!}{2!} = 60$$

Ex. How many different words can be formed from BANANA using all the letters?

There are multiple letters that repeat. A occurs 3 times, while N occurs twice. Need to divide the total by 3! and 2!.

$$\frac{6!}{3!2!} = 60$$

Ex. How many different words can be formed from MISSISSIPPI?

11 total letters, I occurs 4 times, S occurs 4 times, while P occurs twice.

$$\frac{11!}{4!4!2!} = 34650$$

Ex. Find the number of different ways of placing 16 balls in a row given that 4 are black, 3 are white, 7 are red and 2 are blue.

$$\frac{16!}{4!3!7!2!} = 14414400$$

9.2 Homework

1-21 odd

9.3 Combinations, $n C r$

Combinations are similar to permutations, where they both look for possible ways/outcomes to accomplish a task.

Combinations are arrangements of r number of objects chosen from n number of objects where:

- n objects are all different
- no objects can be repeated
- order does **NOT** make a difference
(ab and ba are the same combination)

The number of combinations choosing r objects from n objects is given by:

$$n C r = \frac{n!}{r!(n-r)!}$$

where $r \leq n$

Other ways to write combinations:

$$n C r = C(n, r) = \binom{n}{r}$$

Combination Examples

Ex. How many ways can 2 people be selected from a group of 6 people?

Order does not matter $n = 6$ $r = 2$

$$\begin{aligned} {}_6 C_2 &= \frac{6!}{2!(6-2)!} \\ &= \frac{6!}{2!4!} \end{aligned}$$

$$\begin{aligned} &= \frac{720}{2 \times 24} = 15 \end{aligned}$$

There are 15 ways to select 2 people from a group of 6.

Ex. How many 5 card hands are possible in a regular deck of 52 cards?

Order does not matter

$n = 52$

$r = 5$

$$52C_5$$

$$= \frac{52!}{5!47!}$$

$$= \frac{52 \times 51 \times 50 \times 49 \times 48 \times 47!}{5!47!}$$

$$= 2,598,960$$

There are 2,598,960 different possible hands.

Ex. How many different tickets are possible when playing Lotto 6/49? (must pick 6 numbers out of 49 numbers in any order)

$$49C_6$$

$$= \frac{49!}{6!43!}$$

$$= \frac{49 \times 48 \times 47 \times 46 \times 45 \times 44 \times 43!}{6!43!}$$

$$= 13,983,816$$

There are 13,983,816 possible combinations

Ex. From 6 students and 4 teachers, a committee of 2 students and 2 teachers must be chosen. How many ways can this be done?

(number of ways to choose students)(number of ways to choose teachers)

$$6C_2 \times 4C_2$$

$$= 15 \times 6 = 90$$

There are 90 possible ways

Ex. If night school offers 100 courses, 8 of which are in Mathematics, and you select 4 courses by random selection, how many possibilities include one Mathematics course?

$${}_8C_1 \times {}_{92}C_3$$

$$\binom{8}{1} \binom{92}{3} = 1,004,640$$

There are 1,004,640 possibilities.

Solving Combination Equations

Ex. Solve for n . ${}_nC_2 = 66$

$$\frac{n!}{2!(n-2)!} = 66$$

$$\frac{n(n-1)(n-2)!}{2(n-2)!} = 66$$

$$n^2 - n = 132$$

$$n^2 - n - 132 = 0$$

$$(n - 12)(n + 11) = 0$$

$$n = 12, -11$$

$$n = 12$$

9.3 Homework

2, 5-7, 9, 11

9.4 Binomial Theorem

In previous grade levels of mathematics, you learned how to find the following binomial expansions:

$$(x + y)^1$$

$$= x + y$$

$$(x + y)^2$$

$$= x^2 + 2xy + y^2$$

$$(x + y)^3$$

$$= (x^2 + 2xy + y^2)(x + y)$$

$$= x^3 + 3x^2y + 3xy^2 + y^3$$

What would $(x + y)^4$ equal to?

$$(x + y)^4$$

$$= (x + y)^2(x + y)^2$$

$$= (x^2 + 2xy + y^2)(x^2 + 2xy + y^2)$$

$$= x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4$$

This is tedious and can become very complex at a higher degree.

Is there a more efficient way to compute binomial expansions?

Yes, using binomial theorem!

Binomial Theorem and Pascal's Triangle

The coefficients of a binomial expansion are the same as the numbers in Pascal's Triangle.

Pascal's Triangle	Sum of row
1	$2^0 = 1$
1 1	$2^1 = 2$
1 2 1	$2^2 = 4$
1 3 3 1	$2^3 = 8$
1 4 6 4 1	$2^4 = 16$
1 5 10 10 5 1	$2^5 = 32$
1 6 15 20 15 6 1	$2^6 = 64$

6 is the sum of 1 and 5 the numbers above.

Binomial Expansion

$$(x+y)^0 = 1$$

$$(x+y)^1 = x+y$$

$$(x+y)^2 = x^2 + 2xy + y^2$$

$$(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$$

$$(x+y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4$$

$$(x+y)^5 = x^5 + 5x^4y + 10x^3y^2 + 10x^2y^3 + 5xy^4 + y^5$$

$$(x+y)^6 = x^6 + 6x^5y + 15x^4y^2 + 20x^3y^3 + 15x^2y^4 + 6xy^5 + y^6$$

Notice the numbers in Pascal's Triangle and coefficients in the binomial expansion.

In general, binomial expansions have the form:

$$(x + y)^n = {}_n C_0 x^n y^0 + {}_n C_1 x^{n-1} y^1 + {}_n C_2 x^{n-2} y^2 + \cdots + {}_n C_n x^{n-n} y^n$$

Compute Binomial Expansion Using Binomial Theorem

Ex. Expand $(x + y)^4$

$$\begin{aligned} &= {}_4 C_0 x^4 y^0 + {}_4 C_1 x^3 y^1 + {}_4 C_2 x^2 y^2 + {}_4 C_3 x^1 y^3 + {}_4 C_4 x^0 y^4 \\ &= x^4 + 4x^3 y + 6x^2 y^2 + 4x y^3 + y^4 \end{aligned}$$

Ex. Expand $(x + 2)^5$

$$\begin{aligned} &= {}_5 C_0 x^5 2^0 + {}_5 C_1 x^4 2^1 + {}_5 C_2 x^3 2^2 + {}_5 C_3 x^2 2^3 + {}_5 C_4 x^1 2^4 + {}_5 C_5 x^0 2^5 \\ &= x^5 + 10x^4 + 40x^3 + 80x^2 + 80x + 32 \end{aligned}$$

Finding a Specific Term of a Binomial Expansion

Instead of finding all the terms, it is possible to find a specific term in a binomial expansion.

For $(a + b)^n$, the specific term at position k (where t_1 has $k = 0$) is given by:

$$t_{k+1} = {}_n C_k (a)^{n-k} \cdot b^k$$

Note: First term t_1 has combination ${}_n C_0$ and not ${}_n C_1$

Ex. Find the 5th term of $(2x + y)^{12}$

First, find k for t_5 and n .

$$t_5 = t_{k+1} \rightarrow k = 4 \text{ and } n = 12$$

$$t_5 = {}_{12}C_4 (2x)^{12-4} y^4$$

$$t_5 = 495(256x^8)(y^4)$$

$$t_5 = 126720x^8y^4$$

Ex. Find the coefficient of x^4 in the expansion of $(\sqrt{x} - 2)^{10}$.

$$t_{k+1} = {}_{10}C_k (\sqrt{x})^{10-k} (-2)^k = Cx^4 \quad \text{for some constant } C$$

$$\text{Solve for } k \text{ by comparing } {}_{10}C_k (\sqrt{x})^{10-k} (-2)^k = Cx^4$$

$$\left(x^{\frac{1}{2}}\right)^{10-k} = x^4$$

$$(x)^{5-\frac{1}{2}k} = x^4$$

$$5 - \frac{1}{2}k = 4$$

$$-\frac{1}{2}k = -1$$

$$k = 2$$

To find the coefficient

$$t_{2+1} = {}_2C_2 (\sqrt{x})^{10-2} (-2)^2 = 180x^4$$

\therefore The coefficient is 180

9.4 Homework:

1-13 odd